Skip to main content
Log in

Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aegilops tauschii line of spring type growth habit with theearliest heading among all the VIR world germplasm collection of thisspecies was crossed with three Ae. tauschii lines of winter type growthhabit with low, intermediate and the highest vernalization requirement. 12enzyme loci were involved in genetic analysis. The growth habit was foundto be encoded by single codominant major gene, Vrn-D2. Thefollowing linkages were found: Est5 – Nadhd2 in chromosome 3, Vrn-D2 – Aco2 – Cat2 and Pgm – Nadhd1 in chromosome 4, Est2 – Got2 in chromosome 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyko, E.V., K.S. Gill & B.S. Gill, 1998. A high density genetic linkage map of the Aegilops tauschii genome and its application in wheat breeding. In: A.E. Sinkard (Ed.), Proc. 9th Int. Wheat Genetic Symp., Saskaton, Saskatchewan, Canada, v 2: 167-169.

    Google Scholar 

  • Dubcovsky, J., D. Lijavetzky, L. Appendino & G. Tranquilli, 1998. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97: 968-975.

    Google Scholar 

  • Dudnikov, A. Ju., 1998. Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80: 248-258.

    Google Scholar 

  • Dudnikov, A. Ju., 2000. Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour. and Crop Evol 47: 185-190.

    Google Scholar 

  • Dudnikov, A. Ju, 2001. Chromosomal location of an esterase gene set (Est-10) of common wheat orthologous to Est5 of Aegilops tauschii. Cereal Res Commun 29: 57-60.

    Google Scholar 

  • Gill, K.S., E.L. Lubbers, B.S. Gill, W.J. Raupp & T.S. Cox, 1991. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34: 362-374.

    Google Scholar 

  • Goncharov, N.P. & S.F. Koval, 1989: Genetic of an isogenic line of spring common wheat variety 'Novosibirskaya 67'. (1) Investigation of type of growth habit of an isogenic line ANK-18.Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, biological sciences series 1: 3-6 (in Russian).

    Google Scholar 

  • Goncharov, N.P. & N.N. Chikida, 1995. Genetics of growth habit in Aegilops squarrosa L. Russian J Genet 3: 343-346.

    Google Scholar 

  • Hart, G.E., 1983. Hexaploid wheat (Triticum aestivum L. em Thell). In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, Part B, pp. 35-56. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Jaaska, V., 1980. Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56: 273-284.

    Google Scholar 

  • Jaaska, V., 1981. Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137: 259-273.

    Google Scholar 

  • Kimber, G. & M. Feldman, 1987. Wild Wheat. An Introduction. Special report 353. College of Agr. Univ. Missouri, Columbia, pp. 1-142.

    Google Scholar 

  • Korzun, V., S. Malyshev, A. V. Voylokov, V. Smirnov & A. Borner, 2001. A genetic map of rye (Secale cereale L.). In: T.A. Pshenichnikova & A.J.Worland (Eds.), Proc. 11th EWAC Conf., 24-28, July, 2000, Novosibirsk, pp. 48-51.

  • Laurie, D.A., N. Pratchett, J.H. Bezant & J.W. Snape, 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38: 575-585.

    Google Scholar 

  • Lui, C.J. & M.D. Gale, 1991. The chromosomal location of genes encoding NADH dehydrogenase isozymes in hexaploid wheat and related species. Genome 34: 44-51.

    Google Scholar 

  • McIntosh, R.A., G.E. Hart, K.M. Devos, M.D. Gale & W.J. Rogers, 1998. Catalogue of gene symbols for wheat. In: A.E. Sinkard (Ed.), Proc. 9th Int. Wheat Genetic Symp., Saskatoon, Saskatchewan, Canada, v 5, pp. 1-236.

    Google Scholar 

  • Navruzbekov, N.A., 1989. Evolution of wheat genome and allopolyploidy. Vestnik selskohozyaistvennoy nauki 398: 78-84 (in Russian).

    Google Scholar 

  • Nevo, E., A. Beiles, D. Kaplan, E.M. Golenberg, L. Olsvig-Whittaker & Z. Nuvez, 1986a. Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild barley. Evolution 40: 13-20.

    Google Scholar 

  • Nevo, E., D. Zohary, A. Beiles, D. Kaplan & N. Stroch, 1986b. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica 68: 203-213.

    Google Scholar 

  • Nevo, E. & A. Beiles, 1989. Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77: 421-455.

    Google Scholar 

  • Nevo, E., I. Noy-Meir, A. Beiles, T. Krugman & M. Agamy, 1991. Natural selection of allozyme polymorphisms: microgeographical spatial and temporal ecological differentiations in wild emmer wheat. Israel J. Bot. 40: 419-450.

    Google Scholar 

  • Porceddu, E. & D. Lafiandra, 1985. Origin and evolution of wheats. In: The Origin and Domestication of Cultivated Plants, Symp., Rome, November 25-27, pp. 143-178.

  • Powers, D.A., T. Lauerman, D. Crawford & L. DiMichele, 1991. Genetic mechanisms for adapting to a changing environment. Annu Rev Genet 25: 629-659.

    Google Scholar 

  • Pugsley, A.T., 1971. A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res 22: 21-31.

    Google Scholar 

  • Salina, E., A. Borner, I. Leonova, V. Korzun, L. Laikova, O. Maistrenko & M.S. Roder, 2000. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100: 686-689.

    Google Scholar 

  • Scandalios, J.G., 1994. Engineering organisms for tolerance to oxidative stress: the maize superoxide dismutases. In: C.L. Markert, J.G. Scandalios, H.L. Lim & O.L. Serov (Eds.), Isozymes: Organization and Roles in Evolution, Genetics and Physiology, pp. 23-57. World Scientific, Singapore, New Jersey, london, Hong Kong.

    Google Scholar 

  • Snape, J.W., D.A. Laurie & A.J. Worland, 2000. Mapping and comparative mapping of flowering time genes in wheat. In: Abstracts of the 11th EWAC Conf., 24-28 July, 2000, Novosibirsk, p. 14.

  • Stuber, C.W., 1989. Marker-based selection for quantitative traits. Vortr Pflanzenzuchtg 16: 31-49.

    Google Scholar 

  • Tanaka, M., 1983. Geographical distribution of Aegilops species based on the collections at the plant germplasm institute. Kyoto University. In: Proc. 6th Int. Wheat Genet Symp., Kyoto, Japan, pp. 1009-1024.

  • Thiele, V. & A. Seidel, 1990. Chromosomal location of a catalase gene in wheat using rye-wheat-additions. Plant Breeding 105: 78-79.

    Google Scholar 

  • Zhukovsky, P.M., 1928. A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot, Genet Plant Breed 18: 417-609 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnikov, A.J. Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129, 89–97 (2003). https://doi.org/10.1023/A:1021558628874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021558628874

Navigation