Skip to main content
Log in

Defect chemistry and semiconducting properties of calcium titanate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper considers the effect of oxygen partial pressure on the presence of point defects in calcium titanate (CaTiO3) at elevated temperatures at which a gas/solid equilibrium is reached. Defect models of undoped (CaTiO3) are considered within several regimes of oxygen partial pressures involving (i) extremely reducing conditions, (ii) reducing conditions, and (iii) oxidizing conditions, which are described by different charge-neutrality conditions. The mechanism of donor incorporation is considered in terms of both ionic and electronic charge compensation. It is shown that electronic and ionic charge compensations prevail at low and high p(O2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Herbert, in “Ceramic Dielectrics and Capacitors”, Electrocomponent Science Monographs, Vol. 6, (Gordon and Breach Science Publishers, New York, 1985) pp. 152, 226.

    Google Scholar 

  2. L. L. Hench and J. K. West, in “Principles of Electronic Ceramics”, (Wiley, New York, 1990) pp. 187, 237.

    Google Scholar 

  3. S. Kozinski, E. Podsiadlo, M. Rekas and S. Komornicki, Bull. Acad. Pol. Sci. Chem. 37 (1989) 385.

    Google Scholar 

  4. J. Nowotny and M. Rekas, in “Electronic Ceramic Materials”, edited by J. Nowotny (Trans. Tech. Publishing, Zurich, 1992) pp. 89-92.

    Google Scholar 

  5. W. Wakimo, Ferroelectrics 91 (1989) 69.

    Google Scholar 

  6. N. Yamaoka, M. Masuyama and M. Fukui, Am. Ceram. Soc. Bull. 62 (1983) 698.

    Google Scholar 

  7. M. Fujimoto, Y.-M. Chiang, A. Roshko and W. D. Kingery, J. Am. Ceram. Soc. 68 (1985) C300.

    Google Scholar 

  8. Y. Nakano and N. Ichinose, J. Mater. Sci. 5 (1990) 2910.

    Google Scholar 

  9. H. Iwahara, T. Esaka and T. Managahara, J. Appl. Electrochem. 18 (1988) 173.

    Google Scholar 

  10. Z. Z. Yang, H. Yamada and G. R. Miller, Am. Ceram. Soc. Bull 64 (1985) 1550.

    Google Scholar 

  11. A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibbertson and A. Major, Nature (1979) 218.

  12. A. E. Ringwood, K. D. Reeve and J. D. Tewhey, in “Scientific Basis for Nuclear Management”, Vol. 3 edited by J. G. Moore (Plenum Press, New York, 1981) p. 147.

    Google Scholar 

  13. E. R. Vance and D. K. Agrawal, Nucl. Chem. Waste. Manag. 3 (1982) 229.

    Google Scholar 

  14. A. Jongejan and A. L. Wilkins, J. Less Common Met. 20 (1970) 275.

    Google Scholar 

  15. Y. Tanaka, Bull. Chem. Soc. Jpn. 16 (1941) 455.

    Google Scholar 

  16. L. Merker, J. Am. Ceram. Soc. 45 (1962) 366.

    Google Scholar 

  17. H. J. A. Koopmans, G. M. H. Van Der Velde and P. J. Gellings, Acta Crystallogr. C69 (1983) 1323.

    Google Scholar 

  18. S. Sasaki, C. T. Prewit and Y. D. Bass, ibid. C43 (1987) 1668.

    Google Scholar 

  19. H. F. Kay and P. C. Bailey ibid. 10 (1958) 219.

    Google Scholar 

  20. S. Von Naray-Szabo, Naturwissenschaften 30 (1943) 202.

    Google Scholar 

  21. T. R. N. Kutty and R. Vivekanadan, Mater. Lett. 5 (1987) 79.

    Google Scholar 

  22. N. G. Eror and U. Balachandran, J. Solid State Chem. 43 (1982) 196.

    Google Scholar 

  23. H. F. Kay and P. C. Bailey, Acta Crystallogr. 10 (1957) 219.

    Google Scholar 

  24. S. N. Ruddlesden and P. Popper, ibid. 11 (1958) 54.

    Google Scholar 

  25. R. J. D. Tiley, J. Solid State Chem. 21 (1997) 293.

    Google Scholar 

  26. K. R. Udaykumar and A. N. Cormack, J. Am. Ceram. Soc. 71 (1988) C469.

    Google Scholar 

  27. R. C. Devries, R. Roy and E. F. Osborn, J. Phys. Chem. 58 (1954) 1069.

    Google Scholar 

  28. R. S. Roth, J. Res. Nat. Bur. Stan. 52 (1954) 37.

    Google Scholar 

  29. M. Ceh and D. Kolar, J. Mater. Sci. 29 (1994) 6295.

    Google Scholar 

  30. J. Nowotny and M. Rekas, in “Electronic Ceramic Materials”, (Trans Tech Publishing, Zurich, 1992) pp. 45-144.

    Google Scholar 

  31. A. Linz and K. Herrington, J. Chem. Phys. 28 (1988) 824.

    Google Scholar 

  32. P. Kofstad, “Nonstoichiometry, Diffusion and Electrical Conductivity of Binary Metal Oxides”, (Wiley, 1972).

  33. F. A. Kroeger and H. J. Vink, in “Solid State Physics” edited by F. Seitz and D. Turnbull (Academic Press, New York, 1956) p. 307.

    Google Scholar 

  34. W. L. George and R. E. Grace, J. Phys. Chem. Solids 30 (1969) 881.

    Google Scholar 

  35. U. Balachandran, B. Odekrik and N. G. Eror, J. Solid State Chem. 41 (1982) 185.

    Google Scholar 

  36. L. A. Dunyushkina, A. K. Demin and B. O. Zhuravlev, Proceedings of the Eleventh International Solid State Ionics, Honolulu, Hawaii, USA, 1997, Extended Abstracts, p. 274.

  37. U. Balachandran and N. G. Eror, Mater. Sci. Eng. 54 (1982) 221.

    Google Scholar 

  38. K. R. Udaykumar and A. N. Cormack, J. Phys. Chem. Solids 50 (1989) 55.

    Google Scholar 

  39. K. Ueda, H. Yanagi, H. Hosono and H. Kawazoe, Phys. Rev. B56 (1997) 1298.

    Google Scholar 

  40. I. Barin, in “Thermodynamical Data of Pure Substances” (Verlag CH, Berlin, 1995).

    Google Scholar 

  41. U. Balachandran, B. Odekrik and N. G. Eror, J. Mater. Sci. 17 (1982) 1656.

    Google Scholar 

  42. E. M. Larson, P. G. Eller, J. D. Purson, C. F. Pace, M. P. Estman, R. B. Greegor and F. W. Lytle, J. Solid State Chem. 73 (1988) 480.

    Google Scholar 

  43. E. R. Vance, R. A. Day, Z. Zhang, B. D. Begg, C. J. Ball and M. G. Blackford, J. Solid State Chem. 124 (1996) 77.

    Google Scholar 

  44. E. R. Vance, T. Bak, J. Nowotny, N. B. Manson and S. E. French, J. H. Hadley, F. H. Tsu, Y. Huand and, V. Bellitto, in “Ceramic Interfaces” (IOM, London, 1998) p. 229.

    Google Scholar 

  45. G. Mandel, Phys. Rev. 134A (1964) 1073.

    Google Scholar 

  46. U. Balachandran and N. G. Eror, J. Mater. Sci. 17 (1982) 1795.

    Google Scholar 

  47. U. Balachandran and N. G. Eror, Phys. Status Solidi A 71 (1982) 179.

    Google Scholar 

  48. T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell and E. R. Vance, J. Austral. Soc. 34 (1998) 182.

    Google Scholar 

  49. E. R. Vance, T. Bak, J. Nowotny, N. B. Manson, S. E. French, J. H. Hadley, Jr., F. H. Hsu, Yong Hu and V. Bellitto, in “Interfaces of Ceramic Materials”, edited by R. St. C. Smart and J. Nowotny (Institute of Materials, London, 1998) p. 229.

    Google Scholar 

  50. J. Nowotny and M. Rekas, Solid State Ion. 49 (1991) 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M.F., Bak, T., Nowotny, J. et al. Defect chemistry and semiconducting properties of calcium titanate. Journal of Materials Science: Materials in Electronics 13, 697–704 (2002). https://doi.org/10.1023/A:1021552602704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021552602704

Keywords

Navigation