Landscape Ecology

, Volume 17, Issue 6, pp 559–568 | Cite as

Scale dependence of tree abundance and richness in a tropical rain forest, Malaysia

  • Fangliang He
  • James V. LaFrankie
  • Bo Song

Abstract

Abundance and richness are the two fundamental components of speciesdiversity. They represent two distinct types of variables of which the formerisadditive when aggregated across scales while the latter is nonadditive. Thisstudy investigated the changes in the spatial patterns of abundance andrichnessof tree species across multiple scales in a tropical rain forest of Malaysiaandtheir variations in different regions of the study area. The results showedthatfrom fine to coarse scales abundance had a gradual and systematic change inpattern, whereas the change in richness was much less predictable and a‘hotspot’ in richness at one scale may become a‘coldspot’ at another. The study also demonstrated that differentmeasures of diversity variation (e.g., variance and coefficient of variation)can result in different or even contradictory results which further complicatedthe interpretation of diversity patterns. Because of scale effect the commonlyused measure of species diversity in terms of unit area (e.g.,species/m2) is misleading and of little use in comparing speciesdiversitybetween different ecosystems. Extra care must be taken if management andconservation of species diversity have to be based on information gathered at asingle scale.

Diversity mapping Grain size Malaysia Spatial variation Tropical rain forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonovics J. and Levin D.A. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Annual Review of Ecology and Systematics 11: 411-452.CrossRefGoogle Scholar
  2. Arrhenius O. 1921. Species and area. Journal of Ecology 9: 95-99.Google Scholar
  3. Augspurger C.K. 1983. Offspring recruitment around tropical trees: changes in cohort distance with time. Oikos 40: 189-196.Google Scholar
  4. Bartha S., Czárán T. and Podani J. 1998. Exploring plant community dynamics in abstract coenostate spaces. Abstracta Botanica 22: 49-66.Google Scholar
  5. Bormann F.H. 1953. The statistical efficiency of sample plot size and shape in forest ecology. Ecology 34: 474-487.Google Scholar
  6. Brown B.J. and Allen T.F.H. 1989. The importance of scale in evaluating herbivore impacts. Oikos 54: 189-194.Google Scholar
  7. Burrough P.A. 1987. Spatial aspects of ecological data. In: Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R. (eds), Data analysis in community and landscape ecology. PUDOC, Wageningen, The Netherland, pp. 213-251.Google Scholar
  8. Clark D.A. and Clark D.B. 1984. Spacing dynamics of a tropical rain forest tree: evaluation of the Janzen-Connell model. American Naturalist 124: 769-788.CrossRefGoogle Scholar
  9. Cliff A.D. and Ord J.K. 1973. Spatial autocorrelation. Pion, London, UK.Google Scholar
  10. Connell J.H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer P.J. and Gradwell G.R. (eds), Dynamics of populations. Proceedings of the Advanced Study Institute, Centre for Agricultural Publishing and Documentation. Pudoc, Wageningen, The Netherlands, pp. 298-312.Google Scholar
  11. Condit R., Hubbell S.P., LaFrankie J.V., Sukumar R., Manokaran N., Foster R.B. et al. 1996. Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. Journal of Ecology 84: 549-562.Google Scholar
  12. Crawley M.J. and Harral J.E. 2001. Scale dependence in plant biodiversity. Science 291: 864-868.CrossRefPubMedGoogle Scholar
  13. Dungan J.L., Perry J.N., Dale M.R.T., Legendre P., Citron-Pousty S., Fortin M.-J. et al. 2002. A balanced view of scaling in spatial statistical analysis. Ecography 25: 626-640.CrossRefGoogle Scholar
  14. Fortin M.-J., Drapeau P. and Legendre P. 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209-222.CrossRefGoogle Scholar
  15. Fortin M.-J., Payette S. and Marineau K. 1999. Spatial vegetation diversity index along a postfire successional gradient in the northern boreal forest. Écoscience 6: 204-213.Google Scholar
  16. Gaston K.J. 1994. Spatial patterns of species description: how is our knowledge of the global insect fauna growing? Biological Conservation 67: 37-40.CrossRefGoogle Scholar
  17. Greig-Smith P. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Annals of Botany 16: 293-316.Google Scholar
  18. Grime P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344-347.Google Scholar
  19. Gross K., Willig M.R., Gough L., Inouye R. and Cox S.B. 2000. Patterns of species and productivity at different spatial scales in herbaceous plant communities. Oikos 89: 417-427.CrossRefGoogle Scholar
  20. Hall P., Ashton P.S., Condit R., Manokaran N. and Hubbell S.P. 1998. Signal and noise in sampling tropical forest structure and dynamics. In: Dallmeier F. and Comiskey J.A. (eds), Forest Biodiversity research, monitoring and modeling: Conceptual background and old world case studies. Man and the biosphere series. Vol. 20. Parthenon Publishing, New York, New York, USA, pp. 63-77.Google Scholar
  21. He F., Legendre P., Bellehumeur C. and LaFrankie J.V. 1994. Diversity pattern and spatial scale: a study of a tropical rain forest of Malaysia. Environmental and Ecological Statistics 1: 265-286.CrossRefGoogle Scholar
  22. He F. and Legendre P. 1996. On species-area relations. American Naturalist 148: 719-737.CrossRefGoogle Scholar
  23. Horne J.K. and Schneider D.C. 1995. Spatial variance in ecology. Oikos 74: 18-26.Google Scholar
  24. Janzen D.H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104: 501-528.CrossRefGoogle Scholar
  25. Jelinski D.E. and Wu J. 1996. The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology 11: 129-140.Google Scholar
  26. Juhász-Nagy P. and Podani J. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51: 129-140.CrossRefGoogle Scholar
  27. Kochummen K.M., LaFrankie J.V. and Manokaran N. 1990. Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science 3: 1-13.Google Scholar
  28. Legendre P. and Fortin M.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138.CrossRefGoogle Scholar
  29. Legendre P. and Legendre L. 1998. Numerical ecology. 2nd edn. Elsevier Science, Amsterdam, The Netherlands.Google Scholar
  30. Manokaran N., LaFrankie J.V., Kochummen K.M., Quah E.S., Klahn J.E., Ashton P.S. et al. 1999. The Pasoh 50-ha forest dynamics plot: 1999 CD-ROM version. Forest Research Institute of Malaysia, Kepong, Malaysia.Google Scholar
  31. Moellering H. and Tobler W. 1972. Geographical variances. Geographical Analysis 4: 34-64.Google Scholar
  32. Mouillot D. and Leprêtre A. 1999. A comparison of species diversity estimators. Researches on Population Ecology 41: 203-215.CrossRefGoogle Scholar
  33. Palmer M.W. 1988. Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75: 91-102.CrossRefGoogle Scholar
  34. Peterson D. and Parker V.T. (eds) 1998. Scale Issues in Ecology. Columbia University Press, New York, New York, USA.Google Scholar
  35. Podani J. 1984. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Botanica Hungarica 30: 403-425.Google Scholar
  36. Podani J., Czárán T. and Bartha S. 1993. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abstracta Botanica 17: 37-51.Google Scholar
  37. Ray C. and Hastings A. 1996. Density dependence: are we searching at the wrong spatial scale? Journal of Animal Ecology 65: 556-566.Google Scholar
  38. Schupp E.W. 1992. The Janzen-Connell model for tropical tree diversity: population implications and the importance of spatial scale. American Naturalist 140: 526-530.CrossRefGoogle Scholar
  39. Stohlgren T.J., Chong G.W., Kalkhan M.A. and Schell L.A. 1997. Multiscale sampling of plant diversity: effects of minimum mapping unit size. Ecological Applications 7: 1064-1074.Google Scholar
  40. Stoms D.M. 1994. Scale dependence of species richness maps. Professional Geographer 46: 346-358.CrossRefGoogle Scholar
  41. Taylor P.J. 1977. Quantitative methods in geography: An introduction to spatial analysis. Houghton Mifflin Company, Boston, Massachusetts, USA.Google Scholar
  42. Tillyard R.J. 1914. On the study of zoogeographical regions by means of specific contours, with application to the Odanata of Australia. Proceedings of the Linnean Society of New South Wales 39: 21-43.Google Scholar
  43. Turner M.G., O’Neill R.V., Gardner R.H. and Milne B.T. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology 3: 153-162.CrossRefGoogle Scholar
  44. Westoby M. 1993. Biodiversity in Australia compared with other continents. In: Ricklefs R.E. and Schluter D. (eds), Species diversity in ecological communities. University of Chicago Press, Chicago, Illinois, USA, pp. 170-177.Google Scholar
  45. Wiens J.A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385-397.Google Scholar
  46. Wilson J.B., Gitay H., Steel J.B. and King W.McG. 1998. Relative abundance distributions in plant communities: effects of species richness and of spatial scale. Journal of Vegetation Science 9: 213-220.Google Scholar
  47. Wilson J.B., Steel J.B., King W.McG. and Gitay H. 1999. The effect of spatial scale on evenness. Journal of Vegetation Science 10: 463-468.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Fangliang He
    • 1
  • James V. LaFrankie
    • 2
  • Bo Song
    • 3
  1. 1.Canadian Forest ServicePacific Forestry CentreVictoriaCanada
  2. 2.Center for Tropical Forest ScienceNational Institute of EducationSingapore
  3. 3.Belle W. Baruch Institute of Coastal Ecology and Forest ScienceClemson UniversityGeorgetownUSA

Personalised recommendations