Abstract
Thermodynamic properties of HFC (hydrofluorocarbon) compounds have been extensively studied with worldwide interest as alternative refrigerants. Both quality and quantity in the experimental data far exceed those for the CFC and HCFC refrigerants. These data now provide a great opportunity to examine the validity of theoretical models, and vice versa. Among them, the ideal-gas heat capacity C 0p and virial coefficients derived from the experimental data are of particular interest, since they are directly related to the intramolecular and intermolecular potentials through the statistical mechanical procedure. There have been some discrepancies reported in the observed and theoretical C 0p for HFC compounds. We have performed new calculations of C 0p for several HFCs. The present results are consistent with the selected experimental values. The second (B) and third (C) virial coefficients have been reported for these HFC refrigerants from speed of sound data and Burnett PVT data. Often, a square well-type intermolecular potential is employed to correlate the data. However, the model potential cannot account consistently for both B and C coefficients with the same potential parameters. We have analyzed the data with the Stockmayer potential and obtained self-consistent results for various HFC (R-23, R-32, R-125, R-134a, R-143a, and R-152a) compounds with physically reasonable potential parameters.
This is a preview of subscription content, access via your institution.
REFERENCES
A. S. Rodgers, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 3:117 (1974).
M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14:Suppl No. 1 (1985).
R. E. Pennington and K. A. Kobe, J. Chem. Phys. 22:1442 (1954).
S. S. Chen, A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 4:441 (1975).
K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10:428 (1948).
D. A. Long, R. B. Graenor, and D. T. Jones, Trans. Faraday Soc. 60:1509 (1964).
R. W. Kirk and P. M. Wilt, J. Mol. Spectrosc. 58:102 (1975).
R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273 (1997).
T. Hozumi, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39:493 (1994).
J. R. Nielsen, H. H. Claassen, and N. B. Moran, J. Chem. Phys. 23:329 (1955).
S. Kinumaki and M. Kozuka, Bull. Chem. Soc. Japan 41:809 (1968).
F. B. Brown, A. D. H. Claugue, N. D. Heitkamp, D. F. Koster, and A. Danti, J. Mol. Spectrosc. 24:163 (1967).
D. A. C. Compton and D. M. Rayner, J. Phys. Chem. 86:1628 (1982).
J. Chao and A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocarbons, VIII (1989), v-6881.
K. A. Gillis, Int. J. Thermophys. 18:73 (1997).
T. Hozumi, H. Sato, and K. Watanabe, Int. J. Thermophys. 17:587 (1996).
W. F. Edgell, T. R. Riethof, and C. J. Ward, J. Mol. Spectrosc. 11:92 (1963).
J. R. Nielsen and C. J. Halley, J. Mol. Spectrosc. 17:341 (1965).
A. Danti and J. L. Wood, J. Chem. Phys. 30:582 (1959).
A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741 (1990).
T. Hozumi, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1187 (1996).
R. S. Basu and D. P. Wilson, Int. J. Thermophys. 10:591 (1989).
D. F. Harnish and R. P. Hirschmann, Appl. Spectrosc. 24:28 (1970).
P. N. Brier, J. Mol. Structure 6:23 (1970).
W. Beckermann and F. Kohler, Int. J. Thermophys. 16:455 (1995).
M. Tuerk, M. Crone, and K. Bier, J. Chem. Thermodyn. 28:1179 (1996).
M. S. Zhu, L. Z. Han, K. Z. Zhang, and T. Y. Zhou, Int. J. Thermophys. 14:1039 (1990).
J. R. Nielsen, H. H. Classen, and D. C. Smith, J. Chem. Phys. 18:1471 (1950).
J. R. Durig, S. M. Craven, K. K. Lau, and J. Bragin, J. Chem. Phys. 54:479 (1971).
W. L. Meerts and I. Ozier, Chem. Phys. 152:241 (1991).
J. Chao and A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocardbons, VIII (1989), v-6880.
R. D. Cowan, G. Herzberg, and S. P. Sinha, J. Chem. Phys. 18:1538 (1950).
J. Hatcher and D. M. Yost, J. Chem. Phys. 5:992 (1937).
G. T. Fraser, A. S. Pine, J. L. Domench, and B. H. Pate, J. Chem. Phys. 99:2396 (1993).
R. Kubo (ed.), Thermodynamics and Statistical Mechanics (in Japanese), (Shokabo, Tokyo, 1961), p. 209.
D. C. Smith, R. A. Saunders, J. R. Nielsen, and E. E. Ferguson, J. Chem. Phys. 20:847 (1952).
W. G. Fately and F. A. Miller, Spectrochim. Acta 17:857 (1961).
A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocarbons, VIII (1981), v-6690.
T. Hozumi, T. Koga, H. Sato, and K. Watanabe, Int. J. Thermophys. 14:739 (1993).
R. M. Villamanan, W. D. Chen, G. Wlodarczak, J. Demaison, A. G. Lesarri, J. C. Lopez, and J. L. Alonso, J. Mol. Spectrosc. 171:223 (1995).
J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
T. Kihara, Nippon-Sugaku-Busturigakaishi 17:11 (1943) (in Japanese).
W. H. Stockmayer, J. Chem. Phys. 9:398, 863 (1941).
J. S. Rowlinson, J. Chem. Phys. 19:827 (1951).
T. Kihara, J. Phys. Soc. Japan 3:265 (1948).
R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18:1395 (1950).
T. Kihara, J. Phys. Soc. Japan 6:184 (1951).
C. W. Meyer and G. Morrison, J. Phys. Chem. 95:3860 (1991).
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).
H. Sutter and R. H. Cole, J. Chem. Phys. 52:132 (1970).
H. B. Lange, Jr., and F. P. Stein, J. Chem. Eng. Data 15:56 (1970).
B. de Vries, Ph.D. dissertation (University of Hannover, Hannover, 1997).
T. Hozumi, Ph.D. dissertation (Keio University, Yokohama, 1997).
D. R. Defibaugh, G. Morrison, and L. A. Weber, J. Chem. Eng. Data 39:333 (1994).
L. A. Weber, Int. J. Thermophys. 15:461 (1994).
H.-L. Zhang, Ph.D. dissertation (Keio University, Yokohama, 1997).
S. J. Boyes and L. A. Weber, J. Chem. Thermodyn. 27:163 (1994).
C. M. Bignell and P. J. Dunlop, J. Chem. Phys. 98:4889 (1993).
R. Tillner-Roth and H.D. Baehr, J. Chem. Thermodyn. 24:413 (1992).
Rights and permissions
About this article
Cite this article
Yokozeki, A., Sato, H. & Watanabe, K. Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants. International Journal of Thermophysics 19, 89–127 (1998). https://doi.org/10.1023/A:1021499018749
Issue Date:
DOI: https://doi.org/10.1023/A:1021499018749
- ideal gas
- heat capacity
- hydrofluorocarbons
- Stockmayer potential
- virial coefficient