Skip to main content
Log in

Subatmospheric Vapor Pressures for Fluoromethane (R41), 1,1-Difluoroethane (R152a), and 1,1,1-Trifluoroethane (R143a) Evaluated from Internal-Energy Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Vapor pressures were evaluated from measured internal-energy changes ΔU (2) in the vapor+liquid two-phase region. The method employed a thermodynamic relationship between the derivative quantity (∂U (2)/∂V) T , the vapor pressure p σ, and its temperature derivative (∂p/∂T)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a). In the case of R41, vapor pressures up to 1 MPa were calculated to validate the technique at higher pressures. For R152a, the calculated vapor pressure at the triple-point temperature differed from a direct experimental measurement by less than the claimed uncertainty (5 Pa) of the measurement. The calculated vapor pressures for R41 helped to resolve discrepancies in several published vapor pressure sources. Agreement with experimentally measured vapor pressures for R152a and for R143a near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately 0.04 kPa (0.04%) for the published measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. A. Duarte-Garza and J. W. Magee, Int. J. Thermophys. 18:173 (1997).

    Google Scholar 

  2. P. T. Boggs, R. H. Byrd, J. E. Rogers, and R. B. Schnabel, NISTIR 4834 User's Reference Guide for ODRPACK Version 2.01, Software for Weighted Orthogonal Distance Regression (NIST, Gaithersburg, MD, 1992).

    Google Scholar 

  3. A. M. Demiriz, R. Kohlen, C. Koopmann, D. Moeller, P. Sauermann, G. A. Iglesias-Silva, and F. Kohler, Fluid Phase Equil. 85:313 (1993).

    Google Scholar 

  4. T. Oi, J. Shulman, A. Popowicz, and J. Ishida, J. Phys. Chem. 87:3153 (1983).

    Google Scholar 

  5. J. W. Magee, in NIST Technical Note 1397, C. D. Holcomb, J. W. Magee, J. L. Scott, S. L. Outcalt, and W. M. Haynes, eds. (1997), p. A-54.

  6. J. W. Magee, in NIST Technical Note 1397, C. D. Holcomb, J. W. Magee, J. L. Scott, S. L. Outcalt, and W. M. Haynes, eds. (1997), p. A-75.

  7. L. A. Weber, Int. J. Refrig. 17:117 (1994).

    Google Scholar 

  8. J. W. Magee, in NIST Technical Note 1397, C. D. Holcomb, J. W. Magee, J. L. Scott, S. L. Outcalt, and W. M. Haynes, eds. (1997), p. 14.

  9. S. L. Outcalt and M. O. McLinden, personal communication (National Institute of Standards and Technology, Boulder, Colorado, 1996).

  10. S. L. Outcalt, in NIST Technical Note 1397, C. D. Holcomb, J. W. Magee, J. L. Scott, S. L. Outcalt, and W. M. Haynes, eds. (1997), p. 12.

  11. C. D. Holcomb, in NIST Technical Note 1397, C. D. Holcomb, J. W. Magee, J. L. Scott, S. L. Outcalt, and W. M. Haynes, eds. (1997), p. A-53.

  12. S. L. Outcalt and M. O. McLinden, J. Phys. Chem. Ref. Data 25:605 (1996).

    Google Scholar 

  13. W. Blanke and R. Weiß, Fluid Phase Equil. 80:179 (1992).

    Google Scholar 

  14. H. D. Baehr and R. Tillner-Roth, J. Chem. Thermodyn. 23:1063 (1991).

    Google Scholar 

  15. Y. Higashi, M. Ashizawa, Y. Kabata, T. Majima, M. Uematsu, and K. Watanabe, JSME Int. J. 30:1106 (1987).

    Google Scholar 

  16. A. M. Silva and L. A. Weber, J. Chem. Eng. Data 38:644 (1993).

    Google Scholar 

  17. J. W. Magee, Int. J. Thermophys. 19:1397 (1998).

    Google Scholar 

  18. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 18:1445 (1997).

    Google Scholar 

  19. B. de Vries, Thermodynamische Eigenschaften der alternativen Kältemittel R32, R125, und R143a—Messungen und Zustandgleichungen, Dissertation (Universität Hannover, Fachbereich Maschinebau, 1996); also Forsch. Ber. DKV, 55 (Stuttgart, Germany, 1997).

  20. L. A. Weber and D. R. Defibaugh, J. Chem. Eng. Data 41:1477 (1996).

    Google Scholar 

  21. R. Tillner-Roth, Int. J. Thermophys. 17:1365 (1996).

    Google Scholar 

  22. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 16:79 (1995).

    Google Scholar 

  23. M. L. Huber and M. O. McLinden, Proc. Int. Refrig. Conf. (Purdue University, Lafayette, IN, 1992), p. 453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte-Garza, H.A., Magee, J.W. Subatmospheric Vapor Pressures for Fluoromethane (R41), 1,1-Difluoroethane (R152a), and 1,1,1-Trifluoroethane (R143a) Evaluated from Internal-Energy Measurements. International Journal of Thermophysics 20, 1467–1481 (1999). https://doi.org/10.1023/A:1021493106087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021493106087

Navigation