Skip to main content
Log in

Vapor–Liquid Equilibria of Alternative Refrigerants by Molecular Dynamics Simulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Alternative refrigerants HFC-152a (CHF2CH3), HFC-143a (CF3CH3), HFC-134a (CF3CH2F), and HCFC-142b (CF2ClCH3) are modeled as a dipolar two-center Lennard–Jones fluid. Potential parameters of the model are fitted to the critical temperature and vapor–liquid equilibrium data. The required vapor–liquid equilibrium data of the model fluid are computed by the Gibbs–Duhem integration for molecular elongations L=0.505 and 0.67, and dipole moments μ*2=0, 2, 4, 5, 6, 7, and 8. Critical properties of the model fluid are estimated from the law of rectilinear diameter and critical scaling relation. The vapor–liquid equilibrium data are represented by Wagner equations. Comparison of the vapor–liquid equilibrium data based on the dipolar two-center Lennard–Jones fluid with data from the REFPROP database shows good-to-excellent agreement for coexisting densities and vapor pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Kriebel, A. Muller, J. Winkelmann, and J. Fischer, Int. J. Thermophys. 17:1349 (1996), and Refs. 1–12 therein.

    Google Scholar 

  2. M. Lisal and V. Vacek, Mol. Phys. 87:167 (1996); Fluid Phase Equil. 127:83 (1997).

    Google Scholar 

  3. F. Kohler and N. Van Nhu, Mol. Phys. 80:795 (1993).

    Google Scholar 

  4. C. Vega, B. Saager, and J. Fischer, Mol. Phys. 68:1079 (1989).

    Google Scholar 

  5. M. E. van Leeuwen, Fluid Phase Equil. 99:1 (1994).

    Google Scholar 

  6. J. Gallagher, M. McLinden, G. Morrison, and M. Huber, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), NIST Std. Ref. Database 23, Version 5.0 (NIST, Boulder, CO, 1993).

    Google Scholar 

  7. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  8. J. Fischer, R. Lustig, H. Breitenfelder-Manske, and W. Lemming, Mol. Phys. 52:485 (1984).

    Google Scholar 

  9. Ch. Kriebel, A. Müller, J. Winkelmann, and J. Fischer, Mol. Phys. 84:381 (1995).

    Google Scholar 

  10. D. A. Kofke, J. Chem. Phys. 98:4149 (1993).

    Google Scholar 

  11. M. Lísal and V. Vacek, Mol. Sim. 17:27 (1996); M. Lísal, R. Budinský, and V. Vacek, Fluid Phase Equil. 135:193 (1997).

    Google Scholar 

  12. W. Duschek, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 22:841 (1990).

    Google Scholar 

  13. B. Garzón, S. Lago, C. Vega, and L. F. Rull, J. Chem. Phys. 102:7204 (1995); C. Vega, S. Lago, and B. Garzón, J. Chem. Phys. 98:11181 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lísal, M., Budinský, R., Vacek, V. et al. Vapor–Liquid Equilibria of Alternative Refrigerants by Molecular Dynamics Simulations. International Journal of Thermophysics 20, 163–174 (1999). https://doi.org/10.1023/A:1021490500152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021490500152

Navigation