Skip to main content
Log in

Quantum chemical study of electronic and dynamic properties of metal and mixed non-stoichiometric clusters

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The aim of this contribution is to show that quantum chemistry has suitable tools to extract the specific properties of small metallic and mixed non-stoichiometric clusters which cannot be obtained by extrapolation from the bulk properties to the atom. For this purpose, first the main features of the methods used for the calculations of the ground and excited states of clusters valid at zero temperature (T=0) will be sketched and the factors determining accuracy of results will be pointed out. The structural and optical response properties of cationic Na + n clusters as a function of size will be presented and compared with experimental data. The series of non-stoichiometric alkali-halide clusters containing single and multiple excess electrons will serve as prototypes to study a possible “metal-insulator transition” and “segregation into metallic and ionic parts” in finite systems. Second, an outline of ab initio molecular dynamics methods based on gradient corrected density functional approach with gaussian basis used for determination of temperature dependent ground state properties will be presented. Different temperature behavior of distinct type of structures will be illustrated on an example of Li +9 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Pascual, J. Mendez, J. Gomez-Herrero, A.M. Baro, N. Garcia, U. Landmann, W.D. Luedtke, E.N. Bogachek, and H.-P. Cheng: J. Vac. Sci. Technol. B13 (1995) 1280.

    Article  Google Scholar 

  2. Ch. Rosche, S. Wolf, T. Leisner, F. Granzer, and L. Wöste: inIS & T’s 47 th Annual Conference/ICPS (1994) p. 54.

  3. V. Bonačić-Koutecký, P. Fantucci, and J. Koutecký: Chem. Rev.91 (1991) 1035 and references therein.

    Article  Google Scholar 

  4. C. Wang, S. Pollack, J. Hunter, G. Alameddin, T. Hoover, D. Cameron, S. Liu, and M.M. Kappes: Z. Phys. D19 (1991) 13.

    Article  ADS  Google Scholar 

  5. C. Wang, S. Pollack, T. Dahlseid, G.M. Koretsky, and M.M. Kappes: J. Chem. Phys.96 (1992) 7931.

    Article  ADS  Google Scholar 

  6. M. Broyer and Ph. Dugourd: Comments Atom. Mol. Phys.31 (1995) 183 and references therein.

    Google Scholar 

  7. T. Baumert, R. Thalweiser, V. Weiss, and G. Gerber: inFemtosecond Chemistry, VCH, Verlagsgesellschaft, Weinheim, 1995, p. 397.

    Google Scholar 

  8. C. Ellert, M. Schmitt, C. Schmidt, T. Reinert, and H. Haberland: Phys. Rev. Lett.75 (1995) 1731.

    Article  ADS  Google Scholar 

  9. V. Bonačić-Koutecký, M.M. Kappes, P. Fantucci, and J. Koutecký: J. Chem. Phys. Lett.170 (1990) 26.

    Article  ADS  Google Scholar 

  10. V. Bonačić-Koutecký, J. Pittner, C. Scheuch, M.F. Guest, and J. Koutecký: J. Chem. Phys.96 (1992) 7938.

    Article  ADS  Google Scholar 

  11. V. Bonačić-Koutecký, P. Fantucci, C. Fuchs, C. Gatti, J. Pittner, and S. Polezzo: Chem. Phys. Lett.213 (1993) 522.

    Article  ADS  Google Scholar 

  12. Ph. Dugourd, J. Blanc, V. Bonačić-Koutecký, M. Broyer, J. Chevaleyre, J. Koutecký, J. Pittner, J.-P. Wolf, and L. Wöste: Phys. Rev. Lett.67 (1991) 2638.

    Article  ADS  Google Scholar 

  13. J. Blanc, V. Bonačić-Koutecký, M. Broyer, J. Chevaleyre, Ph. Dugourd, J. Koutecký, C. Scheuch, J.-P. Wolf, and L. Wöste: J. Chem. Phys.96 (1992) 1793.

    Article  ADS  Google Scholar 

  14. V. Bonačić-Koutecký, P. Fantucci, and J. Koutecký: inSpringer Series in Chemical Physics, Vol. 52, Springer-Verlag, Heidelberg, 1994, p. 15.

    Google Scholar 

  15. V. Bonačić-Koutecký, L. Cespiva, P. Fantucci, C. Fuchs, J. Koutecký, and J. Pittner: Comments Atom. Mol. Phys.31 (1995) 233 and references therein.

    Google Scholar 

  16. V. Bonačić-Koutecký, J. Pittner, C. Fuchs, P. Fantucci, M.F. Guest, and J. Koutecký: J. Chem. Phys.104 (1996) 1427.

    Article  ADS  Google Scholar 

  17. V. Bonačić-Koutecký, J. Pittner, and J. Koutecký: Chem. Phys.210 (1996) 313 and references therein.

    Article  Google Scholar 

  18. J. Jellinek, V. Bonačić-Koutecký, P. Fantucci, and M. Wiechert: J. Chem. Phys.101 (1994) 10092.

    Article  ADS  Google Scholar 

  19. P. Fantucci, V. Bonačić-Koutecký, J. Jellinek, M. Wiechert, J.R. Harrison, and M.F. Guest: Chem. Phys. Lett.250 (1996) 47.

    Article  Google Scholar 

  20. V. Bonačić-Koutecký, J. Jellinek, M. Wiechert, and P. Fantucci: J. Chem. Phys., in press.

  21. D. Reichardt, V. Bonačić-Koutecký, P. Fantucci, and J. Jellinek: Z. Phys. D40 (1997) 486.

    Article  ADS  Google Scholar 

  22. K.P. Lawley:Ab initio methods in quantum chemistry, Part I and II, Advances in Chemical Physics LXVII and LXIX, (eds. I. Prigogine and S.A. Rice), John Wiley & Sons, 1987.

  23. C. Fuchs, V. Bonačić-Koutecký, and J. Koutecký: J. Chem. Phys.98 (1990) 3121.

    Article  ADS  Google Scholar 

  24. A.D. Becke: Phys. Rev. A38 (1988) 3098.

    Article  ADS  Google Scholar 

  25. C. Lee, W. Yang, and R.G. Parr: Phys. Rev. B37 (1988) 785.

    Article  ADS  Google Scholar 

  26. R. Car and M. Parrinello: Phys. Rev. Lett.55 (1985) 2471; inSimple Molecular Systems at Very High Density, NATO SAI Series B: Physics, Vol. 186, Plenum, New York, 1989, 455.

    Article  ADS  Google Scholar 

  27. R.N. Barnett, U. Landmann, A. Nitzan, and G. Rajagopal: J. Chem. Phys.94 (1991) 608.

    Article  ADS  Google Scholar 

  28. B. Hartke and E.A. Carter: J. Chem. Phys.97 (1992) 6569.

    Article  ADS  Google Scholar 

  29. I. Boustani, W. Pewestorf, V. Bonačić-Koutecký, and J. Koutecký: Phys. Rev. B35 (1987) 9437.

    Article  ADS  Google Scholar 

  30. V. Bonačić-Koutecký, J. Gaus, M.F. Guest, L. Cespiva, and J. Koutecký: Chem. Phys. Lett.206 (1993) 528.

    Article  ADS  Google Scholar 

  31. E.C. Honea, M.L. Homer, and R.L. Whetten: Phys. Rev. B47 (1993) 7480 and references therein.

    Article  ADS  Google Scholar 

  32. G. Rajagopal, R.N. Barnett, A. Nitzan, U. Landmann, E. Honea, P. Labastie, M.L. Homer, and R.L. Whetten: Phys. Rev. Lett.64 (1990) 2933.

    Article  ADS  Google Scholar 

  33. P. Labastie, J.M. L’Hermite, Ph. Poncharal, and M. Sence: J. Chem. Phys.103 (1995) 6362.

    Article  ADS  Google Scholar 

  34. Ph. Poncharal, J.M. L’Hermite, and P. Labastie: Chem. Phys. Lett.253 (1996) 463.

    Article  Google Scholar 

  35. H. Häkkinen, R.N. Barnett, and U. Landmann: Chem. Phys. Lett.232 (1995) 79.

    Article  ADS  Google Scholar 

  36. R.N. Barnett, H.P. Cheng, H. Häkkinen, and U. Landmann: J. Phys. Chem.99 (1995) 7731.

    Article  Google Scholar 

  37. C. Ochsenfeld and R. Ahlrichs: J. Chem. Phys.101 (1994) 5977; Ber. Bunsenges. Chem.99 (1995) 1191.

    Article  ADS  Google Scholar 

  38. C. Ochsenfeld, J. Gauss, and R. Ahlrichs: J. Chem. Phys.103 (1995) 7401.

    Article  ADS  Google Scholar 

  39. D. Reichardt, V. Bonačić-Koutecký, M. Wiechert, and P. Fantucci: to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 337, Energy transfer in molecular aggregates) and the Consiglio Nationale delle Ricerche (CNR, Rome).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonačić-Koutecký, V., Pittner, J., Reichardt, D. et al. Quantum chemical study of electronic and dynamic properties of metal and mixed non-stoichiometric clusters. Czech J Phys 48, 637–658 (1998). https://doi.org/10.1023/A:1021489605971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021489605971

Keywords

Navigation