Skip to main content
Log in

Measurements of the Thermal Conductivity of HFC-134a in the Temperature Range from 300 to 530 K and at Pressures up to 50 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Measurements of the thermal conductivity of HFC-134a made in a coaxial cylinder cell operating in steady state are reported. The measurements of the thermal conductivity of HFC-134a were performed along several quasi-isotherms between 300 and 530 K in the gas phase and the liquid phase. The pressure ranged from 0.1 to 50 MPa. Based on the experimental data, a background equation is provided to calculate the thermal conductivity outside the critical region as a function of temperature and pressure. A careful analysis of the various sources of errors leads to an estimated uncertainty of ±1.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Le Neindre and Y. Garrabos, Rev. High Pres. Sci. Technol. 7:1183 (1998).

    Google Scholar 

  2. B. Le Neindre and Y. Garrabos, Proc. Fifth Asian Thermophys. Prop. Conf., M. S. Kim and S. T. Ro, eds. (Seoul, 1998), p. 415.

  3. B. Le Neindre and Y. Garrabos, Measurements of the Thermal Conductivity of R22 in the Temperature Range from 300 to 515 K and at Pressures up to 55 MPa, AIChE 1998 Spring National Meeting, New Orleans, Louisiana (1998).

  4. A. T. Sousa, P. S. Fialho, C. A. Nieto de Castro, R. Tufeu, and B. Le Neindre, Int. J. Thermophys. 13:363 (1992).

    Google Scholar 

  5. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657 (1994).

    Google Scholar 

  6. J. Wilhem and E. Vogel, Proc. Fourth Asian Thermophys. Prop. Conf., A. Nagashima, ed. (Tokyo, 1995), p. 627.

  7. U. Hammerschmidt, Int. J. Thermophys. 16:1203 (1995).

    Google Scholar 

  8. M. J. Assael, N. Malamataris, and L. Karagiannidis, Int. J. Thermophys. 18:341 (1997).

    Google Scholar 

  9. U. Gross, Y. W. Song, and E. Hahne, Int. J. Thermophys. 13:957 (1992).

    Google Scholar 

  10. R. Yamamoto, S. Matsuo, and Y. Tanaka, Int. J. Thermophys. 14:73 (1993).

    Google Scholar 

  11. Y. Tanaka, S. Matsuo, and S. Taya, Int. J. Thermophys. 16:121 (1995).

    Google Scholar 

  12. O. B. Tsvetkov and Yu. A. Laptev, in 14 ECTP, P. Claudy, M. Laurent, and J. F. Sacadura, eds. (INSA, Lyon, 1996), p. 77.

    Google Scholar 

  13. M. J. Assael and E. Karagiannidis, Int. J. Thermophys. 14:183 (1993).

    Google Scholar 

  14. A. N. Gurova, U. V. Mardolcar, and C. A. Nieto de Castro, Int. J. Thermophys. 18:1077 (1997).

    Google Scholar 

  15. S. T. Ro, J. Y. Kim, and D. S. Kim, Int. J. Thermophys. 16:1193 (1995).

    Google Scholar 

  16. A. Laesecke, R. A. Perkins, and C. A. Nieto de Castro, Fluid Phase Equil. 80:263 (1992).

    Google Scholar 

  17. R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan, Int. J. Thermophys. 14:965 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Neindre, B., Garrabos, Y. Measurements of the Thermal Conductivity of HFC-134a in the Temperature Range from 300 to 530 K and at Pressures up to 50 MPa. International Journal of Thermophysics 20, 1379–1401 (1999). https://doi.org/10.1023/A:1021480803361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021480803361

Navigation