Skip to main content

Equation of State for Molten Alkali Metals from Surface Tension. Part II

Abstract

This work presents a new method for predicting the equation of state for molten alkali metals, based on statistical–mechanical perturbation theory from two scaling constants that are available from measurements at ordinary pressures and temperatures. The scaling constants are the surface tension and the liquid density at the boiling temperature (γb, ρb). Also, a reference temperature, T Ref, is presented at which the product (T Ref T 1/2b ) is an advantageous corresponding temperature for the second virial coefficient, B 2(T). The virial coefficient of alkali metals cannot be expected to obey a law of corresponding states for normal fluids, because two singlet and triplet potentials are involved. The free parameter of the Ihm–Song–Mason equation of state compensates for the uncertainties in B 2(T). The vapor pressure of molten alkali metals at low temperatures is very low and the experimental data for B 2(T) of these metals are scarce. Therefore, an equation of state for alkali metals from the surface tension and liquid density at boiling temperature (γb, ρb) is a suitable choice. The results, the density of Li through Cs from the melting point up to several hundred degrees above the boiling temperature, are within 5%.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    C. B. Jackson and J. W. Mausteller, Liquid Metals—Their Properties, Handling, and Applications in Modern Materials (Academic Press, New York, 1962).

    Google Scholar 

  2. 2.

    J. W. Mausteller, F. Tepper, and S. J. Rodgers, Alkali Metal Handling and System Operating Techniques (Gordon and Breach, New York, 1967).

    Google Scholar 

  3. 3.

    C. T. Ewing, J. R. Spann, J. P. Stone, and R. R. Miller, J. Chem. Eng. Data 16:27 (1971).

    Google Scholar 

  4. 4.

    C. A. Nieto de Castro, J. M. N. A. Fareleira, P. M. Matias, M. L. V. Ramires, A. A. C. Canelas, and A. J. C. Varandas, Ber. Bunsenges Phys. Chem. 74:53 (1990).

    Google Scholar 

  5. 5.

    P. S. Fialho, M. L. V. Ramires, C. A. Nieto de Castro, J. M. N. A. Fareleira, and U. V. Mardolcar, Ber. Bunsenges Phys. Chem. 98:92 (1994).

    Google Scholar 

  6. 6.

    M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 16:1429 (1995).

    Google Scholar 

  7. 7.

    Y. Song and E. A. Mason, J. Chem. Phys. 91:7840 (1989).

    Google Scholar 

  8. 8.

    G. Ihm, Y. Song., and E. A. Mason, J. Chem Phys. 94:3839 (1991).

    Google Scholar 

  9. 9.

    H. T. Davis and L. E. Scriver, J. Phys. Chem. 80:2805 (1976).

    Google Scholar 

  10. 10.

    E. A. Mason, Am. J. Phys. 34:1193 (1966).

    Google Scholar 

  11. 11.

    M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 17:945 (1996).

    Google Scholar 

  12. 12.

    A. Boushehri and E. A. Mason, Int. J. Thermophys. 14:675 (1993).

    Google Scholar 

  13. 13.

    N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases, 2nd ed. (Hemisphere, Washington, DC, 1983).

    Google Scholar 

  14. 14.

    A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mehdipour, N., Boushehri, A. Equation of State for Molten Alkali Metals from Surface Tension. Part II. International Journal of Thermophysics 19, 331–340 (1998). https://doi.org/10.1023/A:1021475808271

Download citation

  • alkali metals
  • corresponding states
  • equation of state
  • surface tension