Skip to main content
Log in

Structural Reversibility of a Ternary CuO-ZnO-Al2O3 ex Hydrotalcite-Containing Material During Wet Pd Impregnation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Cu-Zn-Al precursor was synthesized by coprecipitation of the corresponding cations with sodium carbonate at constant pH and temperature. CuO-ZnO-Al2O3 composite oxide support was obtained by calcination (673 K) of the Cu-Zn-Al precursor. Two palladium-modified CuO-ZnO-Al2O3 samples were prepared by impregnation of the mixed-oxide support and further calcination (673 K). The presence of remaining CO3 2- anions in the CuO-ZnO-Al2O3 mixed oxide, as a result of incomplete Cu-Zn hydrotalcite phase decomposition, and the hydrothermal-like treatment during the Pd impregnation step, allow the partial reconstruction of the Cu-Zn hydrotalcite-type structure (memory effect). In addition, an enhancement in the CuO crystallinity was obtained for the Pd-modified oxides. A detailed characterization revealed that the hydrotalcite restoration enhances the crystallinity of the copper oxide as a consequence of a crystalline rearrangement of this oxidic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klier, Adv. Catal. 31 (1982) 243.

    Google Scholar 

  2. J.C.J. Bart and R.P.A. Sneeden, Catal. Today 2 (1987) 1.

    Google Scholar 

  3. G.C. Chinchen, P.J. Denny, J.R. Jennings, M.S. Spencer and K.C. Waugh, Appl. Catal. 36 (1988) 1.

    Google Scholar 

  4. F. Cavani, F. Trifirò and A. Vaccari, Catal. Today 11 (1991) 173.

    Google Scholar 

  5. M. Saito, T. Fujitani, M. Takeuchi and T. Watanabe, Appl. Catal. A: General 138 (1996) 311.

    Google Scholar 

  6. T. Inui, H. Hara, T. Takeguchi and J.B. Kim, Catal. Today 36 (1997) 25.

    Google Scholar 

  7. T. Inui and T. Takeguchi, Catal. Today 10 (1991) 95.

    Google Scholar 

  8. K. Fujimoto and Y. Yu, in: New Aspects of Spillover Effect in Catalysis, eds. T. Inui, et al. (Elsevier, Amsterdam, 1993) p. 393.

    Google Scholar 

  9. M. Sahibzada, D. Chadwick and I.S. Metcalfe, Catal. Today 29 (1996) 367.

    Google Scholar 

  10. I. Melián-Cabrera, M. López Granados, P. Terreros and J.L.G. Fierro, Catal. Today 45 (1998) 251.

    Google Scholar 

  11. S. Miyata, Clays Clay Miner. 28 (1980) 50.

    Google Scholar 

  12. T. Sato, K. Kato, T. Endo and M. Shimada, React. Solids 2 (1986) 253.

    Google Scholar 

  13. T. Hibino and A. Tsunashima, Chem. Mater. 10 (1998) 4055.

    Google Scholar 

  14. X-ray Powder Data File, JCPDS 38-487.

  15. X-ray Powder Data File, JCPDS 36-1475.

  16. P. Gherardi, O. Ruggeri, F. Trifirò, A. Vaccari, G. del Piero, G. Manara and B. Notari, in: Preparation of Catalysts III, eds. G. Poncelet, P. Grange and P.A. Jacobs (Elsevier, Amsterdam, 1983) p. 723.

    Google Scholar 

  17. J.L. Li and T. Inui, Appl. Catal. A: General 137 (1996) 105.

    Google Scholar 

  18. S. Miyata, Clays Clay Miner. 23 (1975) 369.

    Google Scholar 

  19. W.T. Reichle, S.Y. Kang and D.S. Everhardt, J. Catal. 101 (1986) 352.

    Google Scholar 

  20. T. Sato, H. Fujita, T. Endo, M. Shimada and A. Tsunashima, React. Solids 5 (1986) 219.

    Google Scholar 

  21. M. Belloto, B. Rebours, O. Clause, J. Lynch, D. Bazin and E. Elkaïm, J. Phys. Chem. 100 (1996) 8527.

    Google Scholar 

  22. M. del Arco, P. Malet, R. Trujillano and V. Rives, Chem. Mater. 3 (1999) 624.

    Google Scholar 

  23. J. Pérez-Ramírez, G. Mul, F. Kapteijn and J.A. Moulijn, J. Mater. Chem. 11 (2001) 821.

    Google Scholar 

  24. X-ray Powder Data File, JCPDS 80-1268.

  25. X-ray Powder Data File, JCPDS 38-487.

  26. L. Alejo, R. Lago, M.A. Peña and J.L.G. Fierro, Appl. Catal. 162 (1997) 281.

    Google Scholar 

  27. R.T. Figueiredo, A. Martínez-Arias, M. López Granados and J.L.G. Fierro, J. Catal. 178 (1998) 146.

    Google Scholar 

  28. D.O. Klenov, G.N. Kryukuva and L.M. Plyasova, J. Mater. Chem. 8 (1998) 1665.

    Google Scholar 

  29. A.J. Marchi and C.R. Apesteguía, Appl. Clay Sci. 13 (1998) 35.

    Google Scholar 

  30. J. Pérez-Ramírez, G. Mul, F. Kapteijn and J.A. Moulijn, Mater. Res. Bull. 36 (2001) 1767.

    Google Scholar 

  31. F. Rey, V. Fornés and J.M. Rojo, J. Chem. Soc. Faraday Trans. 88 (1992) 2233.

    Google Scholar 

  32. M. Belloto, B. Rebours, O. Clause, J. Lynch, D. Bazin and E. Elkaïm, J. Phys. Chem. 100 (1996) 8535.

    Google Scholar 

  33. F. Kooli, C. Depège, A. Ennaqadi, A. de Roy and J.P. Besse, Clays Clay Miner. 45 (1997) 92.

    Google Scholar 

  34. T. Hibino and A. Tsunashima, J. Mater. Sci. Lett. 19 (2000) 1403.

    Google Scholar 

  35. S. Fujita, S. Moribe, Y. Kanamori, M. Kakudate and N. Takezawa, Appl. Catal. A: General 207 (2001) 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melián-Cabrera, I., López Granados, M. & Fierro, J. Structural Reversibility of a Ternary CuO-ZnO-Al2O3 ex Hydrotalcite-Containing Material During Wet Pd Impregnation. Catalysis Letters 84, 153–161 (2002). https://doi.org/10.1023/A:1021467617700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021467617700

Navigation