Skip to main content
Log in

Measurement of the Thermal Conductivity of Si and GaAs Wafers Using the Photothermal Displacement Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity and thermal diffusivity of Si and GaAs wafers were measured using the photothermal displacement technique, and the temperature dependence of these two quantities was investigated. Thermal diffusivity was obtained from the phase difference between the heating source and the signal, and thermal conductivity was determined from the maximum value of the signal amplitude in the temperature range 80 to 300 K. It was verified that an increase in doping concentration gives rise to a decrease in thermal conductivity at low temperatures. The experimental results obtained on samples with different types and doping concentrations are consistent with those expected from theoretical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Hess, Photoacoustic, Photothermal and Photochemical Process at Surfaces and in Thin Film, Vol. 47 (Springer, Berlin, 1990).

    Google Scholar 

  2. M. Reichling, E. Welsch, A. Duparré, and E. Matthias, Opt. Eng. 33:1334 (1994).

    Google Scholar 

  3. R. T. Bailey, F.R. Cruickshank, P. Kerkoc, D. Pugh, and J.N. Sherwood, J. Appl. Phys. 78:602 (1995).

    Google Scholar 

  4. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, Appl. Phys. A 32:141 (1983).

    Google Scholar 

  5. J. Opsal, A. Rosencwaig, and D. L. Willenborg, Appl. Opt. 22:3169 (1983).

    Google Scholar 

  6. M. A. Olmstead and N. M. Amer, Phys. Rev. B 33:2564 (1986).

    Google Scholar 

  7. E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, Can. J. Phys. 66:638 (1988).

    Google Scholar 

  8. E. Welsch, J. Mod. Opt. 38:2159 (1991).

    Google Scholar 

  9. B. S. W. Kuo, J. C. M. Li, and A. W. Schmid, Appl. Phys. A 55:289 (1992).

    Google Scholar 

  10. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity, Vol. 1 (IFI/Plenum, New York, Washington, DC, 1970).

    Google Scholar 

  11. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion, Vol. 13 (IFI/Plenum, New York, Washington, DC, 1977).

    Google Scholar 

  12. INSPEC, The Institution of Electrical Engineers, Properties of Silicon, EMIS Datareviews Series No. 4 (Gresham Press, England, 1988).

    Google Scholar 

  13. INSPEC, The Institution of Electrical Engineers, Properties of Gallium Arsenide, EMIS Datareviews Series No. 2 (Gresham Press, England, 1986).

    Google Scholar 

  14. R. O. Carlson, G. A. Slack, and S. J. Silverman, J. Appl. Phys. 36:505 (1965).

    Google Scholar 

  15. R. P. Tye, Thermal Conductivity, Vol. 2 (Academic Press, London and New York, 1969), pp. 203-247.

    Google Scholar 

  16. A. S. Jordan, J. Crystal Growth (Netherlands) 49:631 (1980).

    Google Scholar 

  17. J. E. Parrott and A. D. Stuckes, Thermal Conductivity of Solids, Vol. 8 (Pion Limited, London, 1975), pp. 95-101.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Seong, D., Ihm, G.H. et al. Measurement of the Thermal Conductivity of Si and GaAs Wafers Using the Photothermal Displacement Technique. International Journal of Thermophysics 19, 281–290 (1998). https://doi.org/10.1023/A:1021467606454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021467606454

Navigation