Skip to main content
Log in

Equilibrium Simulations of 2D Weak Links in p-wave Superfluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A two-dimensional Ginzburg-Landau theory of weak links in a p-wave superfluid is presented. First we consider the symmetry properties of the energy functionals, and their relation to the conserved supercurrents which play an essential role in the weak link problem. In numerical studies, we use the A and B phases of superfluid 3He. The phases on the two sides of the weak link can be chosen separately, and very general soft degrees of freedom may be imposed as boundary conditions. We study all four inequivalent combinations of A and B which are possible for a hole in a planar wall, including weak links with a pinned A-B interface. In all cases, some illustrative current-phase relations (CPR's) are calculated and the critical currents are mapped. Phase diagrams covering the relevant phase space in zero magnetic field are constructed. The numerical methods are also described in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Marchenkov, R. W. Simmonds, S. Backhaus, A. Loshak, J. C. Davis, and R.E. Packard, Phys. Rev. Lett. 83, 3860 (1999).

    Google Scholar 

  2. O. Avenel, Yu. Mukharsky, and E. Varoquaux, Physica B 280, 130 (2000).

    Google Scholar 

  3. J. K. Viljas and E. V. Thuneberg, Phys. Rev. Lett. 83, 3868 (1999).

    Google Scholar 

  4. S.-K. Yip, Phys. Rev. Lett. 83, 3864 (1999).

    Google Scholar 

  5. J. K. Viljas and E. V. Thuneberg, Phys. Rev. B 65, 064530 (2002).

    Google Scholar 

  6. M. Nishida, N. Hatakenaka, and S. Kurihara, Phys. Rev. Lett. 88, 145302 (2002).

    Google Scholar 

  7. W. Zhang and Z. D. Wang Phys. Rev. B 64, 214501 (2001).

    Google Scholar 

  8. N. Hatakenaka, Phys. Rev. Lett. 81, 3753 (1998); J. Phys. Soc. Japan 67, 3672 (1998).

    Google Scholar 

  9. E. V. Thuneberg, Europhys. Lett. 7, 441 (1988).

    Google Scholar 

  10. A. Barone and G. Paternò, Physics and applications of the Josephson effect (John Wiley & Sons, New York, 1982).

    Google Scholar 

  11. S.-K. Yip, O. F. De Alcantara Bonfim, and P. Kumar, Phys. Rev. B 41, 11 214 (1990).

    Google Scholar 

  12. V. Ambegaokar, P. G. deGennes, and D. Rainer, Phys. Rev. A 9, 2676 (1974); Erratum: Phys. Rev A 12, 345 (1975).

    Google Scholar 

  13. V. B. Geshenkenbein, A. I. Larkin, and A. Barone, Phys. Rev. B, 36, 235 (1987).

    Google Scholar 

  14. J. J. A. Baselmans, B. J. van Wees, and T. M. Klapwijk, Phys. Rev. B 65, 224513 (2002).

    Google Scholar 

  15. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).

    Google Scholar 

  16. Y. Tanaka and S. Kashiwaya, Phys. Rev. B, 56, 892 (1997).

    Google Scholar 

  17. I. O. Kulik and A. N. Omel'yanchuk, Fiz. Nizk. Temp. 3, 945 (1977) [Sov. J. Low. Temp. Phys. 3, 459 (1977)]; Fiz. Nizk. Temp. 4, 296 (1978) [Sov. J. Low Temp. Phys. 4, 142 (1978)].

    Google Scholar 

  18. K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).

    Google Scholar 

  19. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 60, 416 (1988).

    Google Scholar 

  20. H. Monien and L. Tewordt, J. Low Temp. Phys. 62, 277 (1986).

    Google Scholar 

  21. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  22. D. Vollhardt and P. Wölfle, The superfluid phases of helium three (Taylor & Francis, London, 1990).

    Google Scholar 

  23. F. W. Byron, Jr. and R. W. Fuller, Mathematics of classical and quantum physics (Dover, New York, 1969).

  24. L. J. Buchholtz and A. L. Fetter, Phys. Rev. B 15, 5225 (1977).

    Google Scholar 

  25. E. V. Thuneberg, Phys. Rev. B 36, 3583 (1987).

    Google Scholar 

  26. J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).

    Google Scholar 

  27. Sauls and Serene, Phys. Rev. B 24, 183 (1981).

    Google Scholar 

  28. J. Viljas and E. Thuneberg, Proceedings of the 23rd International Conference on Low Temperature Physics, submitted to Physica B (2002).

  29. S. Ullah and A. L. Fetter, Phys. Rev. B 39, 4186 (1989).

    Google Scholar 

  30. S. K. Yip, Phys. Rev. B 32, 2915 (1985).

    Google Scholar 

  31. W. Zhang, J. Kurkijärvi, and E. V. Thuneberg, Phys. Rev. B 36, 1987 (1987).

    Google Scholar 

  32. A. L. Fetter and S. Ullah, J. Low Temp. Phys. 70, 515 (1988).

    Google Scholar 

  33. L. H. Kjäldman, J. Kurkijärvi, and D. Rainer, J. Low. Temp. Phys. 33, 577 (1978).

    Google Scholar 

  34. M.C. Cross, in Quantum fluids and solids, eds. S.B. Trickey, E.D. Adams, and J.W. Dufty (Plenum, New York, 1977), p. 183.

    Google Scholar 

  35. N. Schopohl, Phys. Rev. Lett. 58, 1664 (1987).

    Google Scholar 

  36. E. V. Thuneberg, Phys. Rev. B 44, 9685 (1991).

    Google Scholar 

  37. M. Endres and D. Rainer, J. Low. Temp. Phys. 126, 253 (2002).

    Google Scholar 

  38. R. W. Simmonds, A. Marchenkov, S. Vitale, J. C. Davis, and R. E. Packard, Phys. Rev. Lett. 84, 6062 (2000).

    Google Scholar 

  39. W. F. Brinkman and M. C. Cross, p. 105 in Progress in Low Temperature Physics, Vol. VIIA (North-Holland, Amsterdam, 1978).

    Google Scholar 

  40. See for example: M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming, Theory and Algorithms, 2nd ed., (John Wiley & Sons, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viljas, J.K., Thuneberg, E.V. Equilibrium Simulations of 2D Weak Links in p-wave Superfluids. Journal of Low Temperature Physics 129, 423–471 (2002). https://doi.org/10.1023/A:1021464513641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021464513641

Keywords

Navigation