Skip to main content
Log in

Entangled Vortices: Onsager's Geometrical Picture of Superfluid Phase Transitions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superfluid phase transitions are discussed from a geometrical perspective as envisaged by Onsager. The approach focuses on vortex loops which close to the critical temperature form a fuctuating vortex tangle. As the transition is approached, vortex lines proliferate and thereby disorder the superfluid state, so that the system reverts to the normal state. It is shown in detail that loop proliferation can be described in exactly the same way as cluster percolation. Picturing vortex loops as worldlines of bosons, with one of the spatial coordinates interpreted as the time coordinate, a quantitative description of vortex loops can be given. Applying a rotation (to superfluids) or a magnetic field (to superconductors), which suppresses the formation of vortex loops and instead can lead to open vortex lines along the field direction, is shown to be equivalent to taking the nonrelativistic limit. The nonrelativistic theory is the one often used to study vortex lattice melting and to describe the resulting entangled vortex liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Coleman, in: New Phenomena in Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1977).

    Google Scholar 

  2. P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin-Cummings, New York, 1984).

    Google Scholar 

  3. L. Onsager, Nuovo Cimento Suppl. 6, 249 (1949); Ann. NY Acad. Sci. 51, 2867 (1949).

    Google Scholar 

  4. T. Vachaspati, Phys. Rev. D 44, 3723 (1991).

    Google Scholar 

  5. R. M. Bradley, P. N. Strensky, and J.-M. Debierre, Phys. Rev. A 45, 8513 (1992).

    Google Scholar 

  6. M. Hindmarsh and K. Strobl, Nucl. Phys. B 437, 471 (1995).

    Google Scholar 

  7. J. H. Akao, Phys. Rev. E 53, 6048 (1996).

    Google Scholar 

  8. R. P. Feynman, in: Progress in Low Temperature Physics, edited by C. J. Gorter (North-Holland, Amsterdam, 1955), Vol. 1, p. 17.

    Google Scholar 

  9. Early work can be found in: V. N. Popov, Sov. Phys. JETP 37, 341 (1973); F. W. Wiegel, Physica (Utrecht) 65, 321 (1973); Introduction to Path-Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986); T. Banks, B. Meyerson, and J. Kogut, Nucl. Phys. B 129, 493 (1977); R. Savit, Phys. Rev. B 17, 1340 (1978); Rev. Mod. Phys. 52, 453 (1980); W. Helfrich and W. Müller, in: Continuum Models of Discrete Systems (University of Waterloo Press, Waterloo, Ontario, Canada, 1980), p. 753; B. Halperin, in: Physics of Defects, Proceedings of the 1980 Les Houches Summer School, Session XXXV, edited by R. Balian, M. Kleman, and J.-P. Parier (North-Holland, Amsterdam, 1981).

    Google Scholar 

  10. W. Janke, Ph. D. Thesis, Freie Universität Berlin (1985).

  11. G. Kohring, R. E. Shrock, and P. Wills, Phys. Rev. Lett. 57, 1358 (1986).

    Google Scholar 

  12. H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989).

    Google Scholar 

  13. G. A. Williams, Phys. Rev. Lett. 59, 1926 (1987); ibid 82, 1201 (1999).

    Google Scholar 

  14. S. R. Shenoy, Phys. Rev. B 40, 5056 (1989); B. Chattopadhyay, M. C. Mahato, and S. R. Shenoy, Phys. Rev. B 47, 15159 (1993).

    Google Scholar 

  15. N. D. Antunes and L. M. A. Bettencourt, Phys. Rev. Lett. 81, 3083 (1998).

    Google Scholar 

  16. A. K. Nguyen and A. Sudbø, Phys. Rev. B 60, 15307 (1999).

    Google Scholar 

  17. K. Kajantie, M. Laine, T. Leuhaus, A. Rajantie, and K. Rummukainen, Phys. Lett. B 482, 114 (2000).

    Google Scholar 

  18. P. Olsson, Europhys. Lett. 58, 705 (2002).

    Google Scholar 

  19. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, Berlin, 1997).

    Google Scholar 

  20. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1991).

    Google Scholar 

  21. M. E. Fisher, Physics 3, 255 (1967).

    Google Scholar 

  22. A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).

    Google Scholar 

  23. C. M. Fortuin and P. W. Kasteleyn, Physica (Utrecht) 57, 536 (1972).

    Google Scholar 

  24. P. Blanchard, S. Digal, S. Fortunato, D. Gandolfo, T. Mendes, and H. Satz, J. Phys. A 33, 8603 (2000).

    Google Scholar 

  25. J. E. Mayer and S. F. Harrison, J. Chem. Phys. 6, 87 (1938).

    Google Scholar 

  26. J. E. Mayer and M. Goeppert-Mayer, Statistical Mechanics (Wiley, New York, 1940).

    Google Scholar 

  27. H. D. Ursell, Proc. Camb. Phil. Soc. 29, 685 (1927).

    Google Scholar 

  28. R. Becker, Theorie der Wärme (Springer, Berlin, 1955).

    Google Scholar 

  29. S. Fortunato and H. Satz, Nucl. Phys. B 623, 493 (2002).

    Google Scholar 

  30. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1995).

    Google Scholar 

  31. T. Vachaspati and A. Vilenkin, Phys. Rev. D 30, 2036 (1984).

    Google Scholar 

  32. For a recent overview, see the various contributions in: Topological Defects in Cosmology and Condensed Matter Physics, edited by Yu. Bunkov and H. Godfrin (Kluwer, Dordrecht, 2000).

    Google Scholar 

  33. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Google Scholar 

  34. D. Austin, E. J. Copeland, and R. J. Rivers, Phys. Rev. D 49, 4089 (1994).

    Google Scholar 

  35. K. Strobl and M. Hindmarsh, Phys. Rev. E 55, 1120 (1997).

    Google Scholar 

  36. E. Copeland, D. Haws, S. Holbraad, and R. Rivers, in: The Formation and Evolution of Cosmic Strings, edited by G. W. Gibbons, S. W. Hawking, and T. Vachaspati (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  37. J. Hove, S. Mo, and A. Sudbø, Phys. Rev. Lett. 85, 2368 (2000).

    Google Scholar 

  38. A. M. J. Schakel, Phys. Rev. E 63, 026115 (2001).

    Google Scholar 

  39. A. Weinrib and S. Trugman, Phys. Rev. B 31, 2993 (1985).

    Google Scholar 

  40. T. Araki, M. Tsubota, and S. K. Nemirovskii, in: Proceedings of the International Symposium on Quantum Fluids and Solids, QFS 2001, J. Low Temp. Phys. 126, 303 (2002); cond-mat/0201405 (2002).

    Google Scholar 

  41. See the various contributions in Quantized Vortex Dynamics and Superfluid Turbulence, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer, Berlin, 2001).

    Google Scholar 

  42. K. W. Schwarz, Phys. Rev. B 38, 2398 (1988).

    Google Scholar 

  43. I. S. Aranson, N. B. Kopnin, and V. M. Vinokur, Phys. Rev. Lett. 83, 2600 (1999).

    Google Scholar 

  44. V. M. H. Ruutu, V. B. Eltsov, A. J. Gill, T. W. B. Kibble, M. Krusius, Y. G. Makhlin, B. Placais, G. E. Volovik, and W. Xu, Nature, 382, 334 (1996).

    Google Scholar 

  45. W. H. Zurek, Nature, 317, 505 (1985).

    Google Scholar 

  46. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Google Scholar 

  47. R. P. Feynman. Phys. Rev. 80, 440 (1950).

    Google Scholar 

  48. C. R. Stephens, Ann. Phys. (NY) 181, 120 (1988).

    Google Scholar 

  49. A. L. Fetter, Phys. Rev. 162, 143 (1967); Phys. Rev. 163, 390 (1967).

    Google Scholar 

  50. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  51. D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D. R. Nelson and S. Seung, Phys. Rev. B 39, 9153 (1989).

    Google Scholar 

  52. J. de Boer, Physica (Amsterdam) 14, 139 (1948); in: Progress in Low Temperature Physics, Vol. 2, edited by C. J. Gorter (North-Holland, Amsterdam, 1957).

    Google Scholar 

  53. W. R. Magro and D. M. Ceperley, Phys. Rev. B 48, 411 (1993).

    Google Scholar 

  54. R. E. Hetzel, A. Sudbø, and D. A. Huse, Phys. Rev. Lett. 69, 518 (1992); H. Nordborg and G. Blatter, Phys. Rev. B 58, 14 556 (1998); P. Sen, N. Trivedi, and D. M. Ceperley, Phys. Rev. Lett. 86, 4092 (2001), and references therein.

    Google Scholar 

  55. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992); E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, and H. Shtrikman, Nature (London) 375, 373 (1995); A. Schilling, R. A. Fisher, N. E. Phillips, U. Welp, D. Dasgupta, W. K. Kwok, and G. W. Crabtree, ibid 382, 791 (1996), and references therein.

    Google Scholar 

  56. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, W. C. Lee, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. Lett. 70, 3800 (1993).

    Google Scholar 

  57. R. P. Feynman, Phys. Rev. 90, 1116 (1953); ibid 91, 1291 (1953); Statistical Mechanics (Benjamin, Reading, 1972).

    Google Scholar 

  58. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Google Scholar 

  59. S. Bund and A. M. J. Schakel, Mod. Phys. Lett. B 13, 349 (1999).

    Google Scholar 

  60. M. Stone, Int. J. Mod. Phys. B 4, 1465 (1990).

    Google Scholar 

  61. A. Sütő, J. Phys. A 26, 4689 (1993).

    Google Scholar 

  62. E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schakel, A.M.J. Entangled Vortices: Onsager's Geometrical Picture of Superfluid Phase Transitions. Journal of Low Temperature Physics 129, 323–361 (2002). https://doi.org/10.1023/A:1021460412732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021460412732

Keywords

Navigation