Skip to main content
Log in

Rayleigh–Taylor-Like Instability in Near-Critical Pure Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The hydrodynamic stability of a thermodiffusive interface in a near-supercritical fluid is studied. The Navier-Stokes equations written for a van der Waals gas above its critical point are solved by means of a finite volume numerical method. The growth rate of the fluctuations shows that there exists a cutoff wave number beyond which the short wavelengths are stabilized by diffusion. The good agreement between the obtained values and recent theories for miscible fluids confirms that a near-critical fluid subjected to a thermal gradient may develop a gravitational instability for which the density gradient is driven by thermal diffusion and large compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenoun, and D. Beysens, Phys. Rev. A 41:2224 (1990).

    Google Scholar 

  2. A. Onuki, H. Hong, and R. A. Ferrel, Phys. Rev. A 41:2256 (1990).

    Google Scholar 

  3. H. Boukari, R. L. Pego, and R. W. Gammon, Phys. Rev. A 41:2260 (1990).

    Google Scholar 

  4. P. Guenoun, D. Beysens, B. Khalil, Y. Garrabos, B. Kammoun, B. Le Neindre, and B. Zappoli, Phys. Rev. E 47:1531 (1993).

    Google Scholar 

  5. B. Zappoli, S. Amiroudine, P. Carles, and J. Ouazzani, J. Fluid Mech. 316:53 (1996).

    Google Scholar 

  6. S. Amiroudine, P. Larroudé, P. Bontoux, and B. Zappoli, Proc. Second Eur. Symp. “Fluids in Space” (Naples, Italy, 1996).

  7. F. Brochard and P. G. De Gennes, C. R. Acad. Sci. 318(II):27 (1994).

    Google Scholar 

  8. J. R. Authelin, F. Brochard, and P. G. De Gennes, C. R. Acad. Sci. 317(II):1539 (1993).

    Google Scholar 

  9. P. Kurowski, C. Misbah, and S. Tchourkine, Eur. Phys. Lett. 29:309 (1995).

    Google Scholar 

  10. D. H. Sharp, Physica D 12:3 (1984).

    Google Scholar 

  11. M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J. Hocken, Rev. Mod. Phys. 51:79 (1979).

    Google Scholar 

  12. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980).

    Google Scholar 

  13. S. Amiroudine, Modélisation numérique des phénomènes de transport de chaleur et de masse dans les fluides supercritiques, Ph.D. dissertation (Institut de Recherche sur les Phénomènes Hors-Equilibre, Marseille, 1995).

    Google Scholar 

  14. B. Zappoli and P. Carles, Physica D 89:381 (1996).

    Google Scholar 

  15. F. Renaud and S. Gauthier, personal communication (1995).

  16. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappoli, B., Amiroudine, S. & Gauthier, S. Rayleigh–Taylor-Like Instability in Near-Critical Pure Fluids. International Journal of Thermophysics 20, 257–265 (1999). https://doi.org/10.1023/A:1021459020624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021459020624

Navigation