Skip to main content
Log in

CuO x Sitting on Titanium Silicate (ETS-10): Influence of Copper Loading on Dispersion and Redox Properties in Relation to de-NO x Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of copper-based catalysts prepared by dispersing the CuO phase on a titanium silicate (ETS-10) crystalline matrix were studied towards their de-NOx activity. The copper concentration ranged from 0.7 to 70 atomCu nm-2, corresponding to 3-18 wt%. The activity of NO reduction with ethylene was related to morphological and chemical properties of the catalysts. The crystalline character of the catalysts possessing high internal surface and microporosity was preserved up to ca. 3 atomCu nm-2. At higher copper concentration, structure collapse was observed with formation of large aggregates of CuOx. Temperature-programmed reduction experiments showed two reduction peaks with maximum temperatures at ca. 470 and 560 K, for catalysts with copper concentration up to 3.5 atomCu nm-2. The two peaks corresponded to the reduction of highly dispersed and non-interacting CuOx species (470 K) and of crystalline CuOx species (560 K). Catalysts containing copper at higher concentration had only the high-temperature reduction peak, indicating the presence of large aggregates of CuOx. All the results collected seem basically consistent with a value of about 2.5-3 atomCu nm-2 for the maximum dispersion capacity of CuO on the ETS-10 matrix. The amount of copper deposited on ETS-10 affects the activity of catalysts towards NO reduction. The turnover frequencies per copper site calculated as a function of copper concentration showed a clear decreasing trend starting from 0.7 to 3.5 atomCu nm-2. Catalysts with higher copper concentration were completely inactive towards NO reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto and H. Hamada, Catal. Today 10 (1991) 57.

    Google Scholar 

  2. M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u and N. Mizuno, Appl. Catal. 69 (1991) L15.

    Google Scholar 

  3. S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno and M. Iwamoto, Appl. Catal. 70 (1991) L1.

    Google Scholar 

  4. M. Shelef, Chem. Rev. 95 (1995) 209.

    Google Scholar 

  5. Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater. 30 (1999) 3.

    Google Scholar 

  6. H.H. Kung and M.C. Kung, Catal. Today 30 (1996) 5.

    Google Scholar 

  7. M. Iwamoto, H. Furukawa, Y. Mine, G. Mikuriya and S. Kagawa, J. Chem. Soc., Chem. Commun. (1986) 1272.

  8. A. Corma, V. Fornés and E. Palomares, Appl. Catal. B 11 (1997) 233.

    Google Scholar 

  9. B. Coq, D. Tachon, F. Figuéras, G. Mabilon and M. Prigent, Appl. Catal. B 6 (1995) 271.

    Google Scholar 

  10. W. Li, M. Sirilumpen and R.T. Yang, Appl. Catal. B 11 (1997) 347.

    Google Scholar 

  11. T. Ishihara, M. Kagawa, F. Hadama and Y. Takita, J. Catal. 169 (1997) 93.

    Google Scholar 

  12. O. Okada, T. Tabata, M. Kokitsu, H. Ohtsuka, L.M.F. Sabatino and G. Bellussi, Appl. Surf. Sci. 121/122 (1997) 267.

    Google Scholar 

  13. M.W. Anderson, O. Tesaraki, T. Ohsuna, A. Philippou, S.P. MacKay, A. Ferreira, J. Rocha and S. Lidin, Nature 367 (1994) 347.

    Google Scholar 

  14. R.J. Saxton, Topics Catal. 9 (1999) 43.

    Google Scholar 

  15. A. Auroux, C. Picciau and A. Gervasini in: Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1999), vol. 125, p. 555.

    Google Scholar 

  16. A. Gervasini, C. Picciau and A. Auroux, Micropor. Mesopor. Mater. 35–36 (2000) 457.

    Google Scholar 

  17. S. Bordiga, C. Pazé, G. Berlier, D. Scarano, G. Spoto, A. Zecchina and C. Lamberti, Catal. Today 70 (2001) 91.

    Google Scholar 

  18. T. Cheung, S.K. Bhargava, M. Hobday and K. Foger, J. Catal. 158 (1996) 301.

    Google Scholar 

  19. C. Torre-Abreu, M.F. Ribeiro, C. Henriques and G. Delahay, Appl. Catal. B 12 (1997) 249.

    Google Scholar 

  20. T. Beutel, J. Sárkány, G.-D. Lei, J.Y. Yan and W.M.H. Sachtler, J. Phys. Chem. 100 (1996) 845.

    Google Scholar 

  21. C. Dossi, A. Fusi, S. Recchia, R. Psaro and G. Moretti, Micropor. Mesopor. Mater. 30 (1999) 165.

    Google Scholar 

  22. G. Moretti, C. Dossi, A. Fusi, S. Recchia and R. Psaro, Appl. Catal. B 20 (1999) 67.

    Google Scholar 

  23. R. Bulánek, B. Wichterlová, Z. Sobalík and J. Tichy, Appl. Catal. B 31 (2001) 13.

    Google Scholar 

  24. M.C.N. Amorim de Carvalho, F.B. Passos and M. Schmal, Appl. Catal. A 193 (2000) 265.

    Google Scholar 

  25. Dedeček, Z. Sobalik, Z. Tvarůžková, D. Kaucký and B. Wichterlová, J. Phys. Chem. 99 (1995) 16327.

    Google Scholar 

  26. C. Henriques, M.F. Ribeiro, C. Abreu, D.M. Murphy, F. Poignant, J. Saussey and J.C. Lavalley, Appl. Catal. B 16 (1998) 79.

    Google Scholar 

  27. S.-K. Park, V. Kurshev, Z. Luan, C.W. Lee and L. Kevan, Micropor. Mesopor. Mater. 38 (2000) 255.

    Google Scholar 

  28. B. Coq, D. Tachon, F. Figuéras, G. Mabilon and M. Prigent, Appl. Catal. B 6 (1995) 271.

    Google Scholar 

  29. C. Torre-Abreu, M.F. Ribeiro, C. Henriques and F.R. Ribeiro, Appl. Catal. B 11 (1997) 383.

    Google Scholar 

  30. C. Márquez-Alvarez, I. Rodríguez-Ramos, A. Guerrero-Ruiz, G.L. Haller and M. Fernández-García, J. Am. Chem. Soc. 119 (1997) 2905.

    Google Scholar 

  31. Z. Chajar, M. Primet and H. Praliaud, J. Catal. 180 (1998) 279.

    Google Scholar 

  32. D. Pietrogiacomi, D. Sannino, S. Tuti, P. Ciambelli, V. Indovina, M. Occhiuzzi and F. Pepe, Appl. Catal. B 21 (1999) 141.

    Google Scholar 

  33. G. Centi, S. Perathoner, D. Biglino and E. Giamello, J. Catal. 152 (1995) 75.

    Google Scholar 

  34. K.A. Bethke, M.C. Kung, B. Yang, M. Shah, D. Alt, C. Li and H.H. Kung, Catal. Today 26 (1995) 169.

    Google Scholar 

  35. P. Carniti, A. Gervasini, V.H. Modica, N. Ravasio, Appl. Catal. B 28 (2000) 175.

    Google Scholar 

  36. B. Jouguet, A. Gervasini and A. Auroux, Chem. Eng. Technol. 18 (1995) 243.

    Google Scholar 

  37. M. Fadoni and L. Lucarelli, Stud. Surf. Sci. Catal. 120A (1999) 177.

    Google Scholar 

  38. P. Malet and A. Caballero, J. Chem. Soc., Faraday Trans. I 84(7) (1988) 2369.

    Google Scholar 

  39. D.A.M. Monti and A. Baiker, J. Catal. 83 (1983) 323.

    Google Scholar 

  40. G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci, J. Catal. 148 (1994) 709.

    Google Scholar 

  41. G.C. Bond, S.N. Namijo and J.S. Wakeman, J. Mol. Catal. 64 (1991) 305.

    Google Scholar 

  42. G. Córdoba, M. Viniegra, J.L.G. Fierro, J. Padilla and R. Arroyo, J. Solid State Chem. 138 (1998) 1.

    Google Scholar 

  43. F.S. Delk and A. Vãvere, J. Catal. 85 (1984) 380.

    Google Scholar 

  44. P. Carniti and A. Gervasini, React. Kinet. Catal. Lett. 67 (1999) 233.

    Google Scholar 

  45. M. Shelef, C.N. Montreuil and H.W. Jen, Catal. Lett. 26 (1994) 277.

    Google Scholar 

  46. V. Tomašic, Z. Gomzi and S. Zrncevic, Appl. Catal. B 18 (1998) 233.

    Google Scholar 

  47. M.J.D. Powell, Comput. J. 7 (1965) 303.

    Google Scholar 

  48. B. Carnahan, H.A. Luther and J.O. Wilkes, Applied Numerical Methods (Wiley, New York, 1969), p. 361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervasini, A., Carniti, P. CuO x Sitting on Titanium Silicate (ETS-10): Influence of Copper Loading on Dispersion and Redox Properties in Relation to de-NO x Activity. Catalysis Letters 84, 235–244 (2002). https://doi.org/10.1023/A:1021440306313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021440306313

Navigation