Skip to main content
Log in

Correlation and Prediction of the Transport Properties of Refrigerants Using Two Modified Rough Hard-Sphere Models

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Two methods are presented for the correlation and prediction of the viscosities and thermal conductivities of refrigerants R11, R12, R22, R32, R124, R125, R134a, R141b, and R152 and their mixtures. The first (termed RHS1) is a modified rough-hard-sphere method based on the smooth hard-sphere correlations of Assael et al. The method requires two or three parameters for characterizing each refrigerant but is able to correlate transport properties over wide ranges of pressure and temperature. The second method (RHS2) is also a modified rough-hard-sphere method, but based on an effective hard-sphere diameter for Lennard–Jones (LJ) fluids. The LJ parameters and the effective hard-sphere diameter required in this method are determined from a knowledge of the density–temperature behavior of the fluid at saturation. Comparisons with the rough-hard-sphere method of Assael and co-workers (RHS3) are shown. We also show that the RHS2 method can be used to correlate as well as predict the transport properties of refrigerants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:269 (1992).

    Google Scholar 

  2. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:359 (1992).

    Google Scholar 

  3. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:895 (1992).

    Google Scholar 

  4. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 15:189 (1994).

    Google Scholar 

  5. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 16:761 (1995).

    Google Scholar 

  6. T. F. Sun, J. Bleazard, and A. S. Teja, J. Phys. Chem. 98:1306 (1994).

    Google Scholar 

  7. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  8. J. H. Dymond and M. A. Awan, Int. J. Thermophys. 10:941 (1989).

    Google Scholar 

  9. J. H. Dymond, Q. Rev. Chem. Soc. 3:317 (1985)

    Google Scholar 

  10. D. M. Heyes, J. Chem. Soc. Farada Trans. 84(6):705 (1988).

    Google Scholar 

  11. T. F. Sun and A. S. Teja, J. Phys. Chem. 100:17365 (1996).

    Google Scholar 

  12. M. Huber, J. Gallagher, M. McLinden, and G. Morrison, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixture Database (REFPROP), Standard Reference Database 23, Version 5.0 (National Institute of Standards and Technology, Gaithersburg, MD, 1996).

    Google Scholar 

  13. M. J. Assael, S. K. Polimatidou, E. Vogel, and W. A. Wakeham, Int. J. Thermophys. 15:575 (1994).

    Google Scholar 

  14. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 15:591 (1994).

    Google Scholar 

  15. M. J. Assael and S. K. Polimatidou, Int. J. Thermophys. 15:779 (1994).

    Google Scholar 

  16. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 14:33 (1993).

    Google Scholar 

  17. C. M. B. P. Oliveira and W. A. Wakeham, Int. J. Thermophys. 14:1131 (1993).

    Google Scholar 

  18. P. S. van der Gulik, Int. J. Thermophys. 14:851 (1993).

    Google Scholar 

  19. T. Okubo, T. Hasuo, and A. Nagashima, Int. J. Thermophys. 13:931 (1993).

    Google Scholar 

  20. A. Kumagai and S. Takahashi, Int. J Thermophys. 12:105 (1991).

    Google Scholar 

  21. A. Kumagai and S. Takahashi, Int. J. Thermophys. 14:339 (1993).

    Google Scholar 

  22. D. Ripple and O. Matar, J. Chem. Eng. Data 38:560 (1993).

    Google Scholar 

  23. D. E. Diller, A. S. Aragon, and A. Laesecke, Fluid Phase Equil. 88:251 (1993).

    Google Scholar 

  24. D. E. Diller and S. M. Peterson, Int. J. Thermophys. 14:55 (1993).

    Google Scholar 

  25. M. J. Assael, L. Karagiannidis, and W. A. Wakeham, Int. J. Thermophys. 13:735 (1992).

    Google Scholar 

  26. J. Yata, T. Minamiyama, and S. Tanaka, Int. J. Thermophys. 5:209 (1984).

    Google Scholar 

  27. N. Kitazawa and A. Nagashima, Bull. JSME 24:374 (1981).

    Google Scholar 

  28. M. J. Assael and L. Karagiannidis, Int. J. Thermophys. 14:183 (1993).

    Google Scholar 

  29. S. H. Kim, D. S. Kim, M. S. Kim, and S. T. Ro, Int. J. Thermophys. 14:937 (1993).

    Google Scholar 

  30. M. Papadaki and W. A. Wakeham, Int. J. Thermophys. 14:1215 (1993).

    Google Scholar 

  31. J. Yata, M. Hori, T. Kurahashi, and T. Minamiyama, Fluid Phase Equil. 80:287 (1992).

    Google Scholar 

  32. M. Papadaki, M. Schmitt, A. Seitz, K. Stefan, B. Taxis, and W. A. Wakeham, Int. J. Thermophys. 14:173 (1993).

    Google Scholar 

  33. A. Laesecke, R. A. Perkins, and C. A. Nieto de Castro, Fluid Phase Equil. 80:263 (1992).

    Google Scholar 

  34. U. Gross, Y. W. Song, and E. Hahne, Int. J. Thermophys. 13:957 (1992).

    Google Scholar 

  35. U. Gross, Y. W. Song, and E. Hahne, Fluid Phase Equil. 76:273 (1992).

    Google Scholar 

  36. J. Yata, M. Hori, K. Kobayashi, and T. Minamiyama, Int. J. Thermophys. 17:561 (1996).

    Google Scholar 

  37. S. T. Ro, J. Y. Kim, and D. S. Kim, Int. J. Thermophys. 16:1193 (1995).

    Google Scholar 

  38. M. J. Assael and L. Karagiannidis, Int. J. Thermophys. 16:851 (1995).

    Google Scholar 

  39. M. Arnemann and H. Kruse, Proceedings of XVIIIth International Congress of Refrigeration, Montreal, Canada, Vol. II (1991), pp. 379-383.

    Google Scholar 

  40. Y. A. Mikhno and V. Z. Geller, Heat Transfer Soviet Res. 16:135 (1984).

    Google Scholar 

  41. S. T. Ro, J. Y. Kim, and D. S. Kim, Int. J. Thermophys. 16:1193 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teja, A.S., Smith, R.L., King, R.K. et al. Correlation and Prediction of the Transport Properties of Refrigerants Using Two Modified Rough Hard-Sphere Models. International Journal of Thermophysics 20, 149–161 (1999). https://doi.org/10.1023/A:1021438516081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021438516081

Navigation