Skip to main content

Comparative Physiological Responses in Chinese Cabbage Induced by Herbivory and Fungal Infection

Abstract

Fungal infection of Chinese cabbage leaves by Alternaria brassicae has earlier been shown to have detrimental effects on larval development of the chrysomelid beetle Phaedon cochleariae. Furthermore, adults of this leaf beetle avoid fungus-infected Chinese cabbage leaves for oviposition and feeding. However, herbivory had no impact on fungal growth. In this study, we investigated physiological responses of the host plant to herbivore attack and fungal infection in order to elucidate the mechanisms of the described ecological interactions between the fungus and the herbivore. Changes in primary factors (water, C/N ratio, protein, sucrose) and defense-related plant compounds (glucosinolates, anthocyanins, peroxidase) were measured. Herbivory and fungal infection reduced the sucrose concentration of leaves and increased amounts of indole glucosinolates as well as total anthocyanins. In addition, water content was slightly lower in insect-damaged but not in infected leaves. Higher levels of peroxidase activity resulted exclusively from fungal infection. The C/N ratio and total protein content remained unaffected by either treatment. The implications of the induced plant changes on the herbivore are discussed.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Ayres, P. G. 1992. Pests and Pathogens—Plant Responses to Foliar Attack. Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Bains, P. S. and Tewari, J. P. 1987. Purification, chemical characterization and host-specifity of the toxin produced by Alternaria brassicae. Physiol. Mol. Plant Pathol. 30:259–271.

    CAS  Article  Google Scholar 

  • Baur, R., StÄdler, E., Monde, K., and Tagasuki, M. 1998. Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum. Chemoecology 8:163–168.

    CAS  Article  Google Scholar 

  • Baldwin, I. T. and Preston, C. A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.

    CAS  Article  Google Scholar 

  • Bates, N. J. and Rothstein, S. J. 1998. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16:561–569.

    Article  Google Scholar 

  • Bi, J. L., Murphy, J. B., and Felton, G. W. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23:97–117.

    CAS  Article  Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    CAS  Article  Google Scholar 

  • Clancy, K.M. 1992. The role of sugars in western spruce budworm nutritional ecology. Ecol. Entomol. 17:189–197.

    Article  Google Scholar 

  • Constabel, C. P. 1999. A survey of herbivore-inducible defensive proteins and phytochemicals, pp. 137–166, in A. A. Agrawal, S. Tuzun, and E. Bent (eds.). Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture. APS Press, St. Paul.

    Google Scholar 

  • Dadd, R. H. 1985. Nutrition: organisms, pp. 313–390, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology. Vol. 4, Regulation: Digestion, Nutrition, Excretion. Pergamon, Oxford.

    Google Scholar 

  • Doughty, K. J., Porter, A. J. R., Morton, A. M., Kiddle, G., Bock, C. H., and Wallsgrove, R. 1991. Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection by Alternaria brassicae (Berk.) Sacc. Ann. Appl. Biol. 118:469–477.

    CAS  Article  Google Scholar 

  • Dowd, P. F. and Lagrimini, L.M. 1997. Examination of different tobacco (Nicotiana spp.) types underand overproducing tobacco anionic peroxidase for their leaf resistance against Helicoverpa zea. J. Chem. Ecol. 23:2357–2370.

    CAS  Article  Google Scholar 

  • Duniway, J. M. and Durbin, R. D. 1971. Some effects of Uromyces phaseoli on the transpiration rate and stomatal response of bean leaves. Phytopathology 61:409–411.

    Article  Google Scholar 

  • Fahey, J. W., Zalcman, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    CAS  Article  Google Scholar 

  • Franceschi, V. R. and Grimes, H. D. 1991. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Nal. Acad. Sci. USA 88:6745–6749.

    CAS  Article  Google Scholar 

  • GÖtz, M. 1996. Zur vegetativen und generativen Entwicklung der obligat biotrophen Parasiten in den Pathosystemen Triticum aestivum/Blumeria graminis und Phaseolus vulgaris/Uromyces appendiculatus. Ph.D. thesis. Technische Universität Braunschweig, Germany.

    Google Scholar 

  • Gupta, S. K., Gupta, P. P., Yadava, T. P., and Kaushik, C. D. 1990. Metabolic changes in mustard due to alternaria leaf blight. Indian Phytopathol. 43:64–69.

    CAS  Google Scholar 

  • GrÖntoft, M. and O'Connor, D. 1990. Greenhouse method for testing of resistance of young Brassica plants to Alternaria brassicae. Plant Breed. 105:160–164.

    Article  Google Scholar 

  • Hammerschmidt, R. 1999. Induced disease resistance: howdo induced plants stop pathogens? Physiol. Mol. Plant Pathol. 55:77–85.

    CAS  Article  Google Scholar 

  • Harborne, J. B. and Williams, C. A. 1995. Anthocyanins and other flavonoids. Nat. Prod. Rep. 12:639–657.

    CAS  Article  Google Scholar 

  • Harborne, J. B. and Williams, C. A. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481–504.

    CAS  Article  Google Scholar 

  • Hatcher, P. E. 1995. Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biol. Rev. 70:639–694.

    Article  Google Scholar 

  • Hatcher, P. E. and Ayres, P. G. 1997. Indirect interactions between insect herbivores and pathogenic fungi on leaves, pp. 133–149, in A. C. Gange and V. K. Brown (eds.). Multitrophic Interactions in Terrestrial Systems. Blackwell Science, Oxford.

    Google Scholar 

  • Hatcher, P. E., Paul, N. D., Ayres, P. G., and Whittaker, J. B. 1994. The effect of a foliar disease (rust) on the development of Gastrophysa viridula (Coleoptera:Chrysomelidae). Ecol. Entomol. 19:349–360.

    Article  Google Scholar 

  • Hatcher, P. E., Ayres, P. G., and Paul, N. D. 1995. The effect of natural and simulated insect herbivory, and leaf age, on the process of infection of Rumex crispus L. and R. obtusifolius L. by Uromyces rumicis (Schum.) Wint. New Phytol. 130:239–249.

    Article  Google Scholar 

  • Hedin, P. A., Jenkins, J. N., Collum, D. H., White, W. H., Parrott, W. L., and Macgown, M. W. 1983. Cyanidin-3-β-glucoside, a newly recognized basis for resistance in cotton to the tobacco budworm Heliothis virescens (Fab.) (Lepidoptera: Noctuidae). Experientia 39:799–801.

    CAS  Article  Google Scholar 

  • Hopkins, R. J., Griffiths, D. W., Birch, A. N. E., and MCkinley, R. G. 1998. Influence of increasing herbivore pressure on modification of glucosinolate content of swedes (Brassica napus spp.rapifera). J. Chem. Ecol. 24:2003–2019.

    CAS  Article  Google Scholar 

  • Jones, C. G., Hare, J. D., and Compton, S. J. 1989. Measuring plant protein with the Bradford assay. J. Chem. Ecol. 15:979–992.

    CAS  Article  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.

    Book  Google Scholar 

  • Karban, R. and Kuc, J. 1999. Induced resistance against pathogens and herbivores: an overview, pp. 1–15, in A. A. Agrawal, S. Tuzun, and E. Bent (eds.). Induced Plant Defenses against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Kiddle, G. A., Bennett, R. N., Botting, N. P., Davidson, N. E., Robertson, A. A. B., and Wallsgrove, R. M. 2001. High performance liquid-chromatography separation of natural and synthetic desulfoglucosinolates and their chemical validation by spectroscopic, NMR, and CI-MS methods. Phytochem. Methods 12:226–242.

    CAS  Article  Google Scholar 

  • Kingsley, P., Scriber, J. M., Grau, C. R., and Delwiche, P. A. 1983. Feeding and growth performance of Spodoptera eridania (Noctuidae: Lepidoptera) on “vernal” alfalfa as influenced by Verticillium wilt. Prot. Ecol. 5:127–134.

    Google Scholar 

  • Koritsas, V. M., Lewis, J. A., and Fenwick, G. R. 1991. Glucosinolate response of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann. Appl. Biol. 118:209–221.

    Article  Google Scholar 

  • KÖhle, H. 1989. FrUntersuchungen zur Physiologie des Alternaria-Befalls von Raps. Z. Pflanzenkrankh. Pflanzensch. 96:225–238.

    Google Scholar 

  • Lim, C. O., Lee, S. I., Chung, W. S., Park, S. H., Hwang, I., and Cho, M. J. 1996. Characterization of a cDNA encoding cystein proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds. Plant Mol. Biol. 30:373–379.

    CAS  Article  Google Scholar 

  • Lo, S. C. and Nicholson, R. L. 1998. Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Plant Physiol. 116:979–989.

    CAS  Article  Google Scholar 

  • Louda, S. and Mole, S. 1991. Glucosinolates: chemistry and ecology, pp. 123–164, in G. A. Rosenthal and M. R. Beerenbaum (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, San Diego, California.

    Chapter  Google Scholar 

  • Ludwig-Müller, J., Schubert, B., Pieper, K., Ihmig, S., and Hilgenberg, W. 1997. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 44:407–414.

    Article  Google Scholar 

  • Manicelli, A. L. 1984. Photoregulation of anthocyanin synthesis. Plant Physiol. 75:447–453.

    Article  Google Scholar 

  • Matsuda, K. 1988. Feeding stimulants of leaf beetles, pp. 41–56, in P. Jolivet, E. Petitpierre, T. H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • MÜller, C. 1999. Chemische Ökologie des Phytophagenkomplexes an Tanacetum vulgare L. (Asteraceae). PhD thesis. Freie Universität, Berlin.

    Google Scholar 

  • Nielsen, J. K. 1978. Host plant discrimination within Cruciferae: feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24:41–54. CABBAGE RESPONSES TO HERBIVORY AND INFECTION 2463

    CAS  Article  Google Scholar 

  • Østergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., Mundy, J., Gajhede, M., and Henriksen, A. 2000. Arabidopsis ATP A2 peroxidase. Expression and high resolution structure of a plant peroxidase with implications for lignification. Plant Mol. Biol. 44:231–243.

    Article  Google Scholar 

  • Paul, N. D., Hatcher, P. E., and Taylor, J. E. 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci. 5:220–225.

    CAS  Article  Google Scholar 

  • RostÁs, M. and Hilker, M. 2002a. Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agric. For. Entomol. In press.

    Article  Google Scholar 

  • RostÁs, M. and Hilker, M. 2002b. Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entomol. Exp. Appl. In press.

    CAS  Article  Google Scholar 

  • Schoonhoven, L. M., Jermy, T., and Van Loon, J. J. A. 1998. Insect-Plant Biology. Chapman & Hall, London, United Kingdom.

    Book  Google Scholar 

  • Siemens, D. H. and Mitchell olds, T. 1996. Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): Consequences of concentration and induced resistance. Environ. Entom. 25:1344–1353.

    CAS  Article  Google Scholar 

  • Slansky, F. and Scriber, J. M. 1985. Food consumption and utilization, pp. 88–163, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology,Vol. 4, Regulation: Digestion, Nutrition, Excretion. Pergamon, Oxford.

    Google Scholar 

  • Stout, M. J. and Bostock, R.M. 1999. Specificity of induced responses to arthropods and pathogens, pp. 183–209, in A. A. Agrawal, S. Tuzun, E. Bent (eds.). Induced Plant Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Stout, M. J., Workman, K. V., Bostock, R. M., and Duffey, S. S. 1998. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomol. Exp. Appl. 86:267–279.

    CAS  Article  Google Scholar 

  • Stout, M. J, Fidantsef, A. L., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:115–130.

    CAS  Article  Google Scholar 

  • Valentine, H. T., Wallner, E., and Wargo, P. M. 1983. Nutritional changes in host foliage during and after defoliation, and their relation to the weight of gypsy moth pupae. Oecologia 57:298–302.

    Article  Google Scholar 

  • Wallsgrove, R. M., Doughty, K., and Bennett, R. N. 1999. Glucosinolates, pp. 523–562, in B. K. Singh (ed.). Plant Amino Acids: Biochemistry and Biotechnology. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Hilker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rostás, M., Bennett, R. & Hilker, M. Comparative Physiological Responses in Chinese Cabbage Induced by Herbivory and Fungal Infection. J Chem Ecol 28, 2449–2463 (2002). https://doi.org/10.1023/A:1021427917603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021427917603

  • Tripartite interactions
  • phytopathogenic fungus infection
  • herbivory
  • induced resistance
  • cross-effects
  • nutrients
  • glucosinolates
  • anthocyanins
  • peroxidase
  • Chinese cabbage
  • Phaedon cochleariae
  • Alternaria brassicae