Skip to main content
Log in

Thermal Conductivity of 1,1-Difluoroethane (HFC-152a)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity measurements were performed on 1,1-difluoroethane (HFC-152a) using the polarized transient hot-wire technique in the temperature range of 214 to 294 K and at pressures up to 19 MPa. This technique was used previously for measurements on other halocarbons along the saturation line and in the compressed liquid phase. No dependence of the polarization voltage was found for the thermal conductivity values, demonstrating that the technique was used with success. Also, no influence of heat transfer by radiation or convection was detected, in all the range of densities studied. The samples were supplied with stated purities greater than 99.9%. The reproducibility of the experiments was found to be 0.03%, while the total uncertainty is estimated to be 0.5%. The experimental data were compared with data from other sources. Values for the thermal conductivity along the saturation line for several temperatures were achieved by extrapolating the high-pressure data to the saturation density for each isotherm. The data obtained were also correlated using a modification of the van der Waals model (smooth hard spheres) with an uncertainty of 1.1%, at a 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Millat, J. H. Dymond, and C. A. Nieto de Castro (eds.), The Transport Properties of Fluids—Their Correlation, Prediction, and Estimation (Cambridge University Press, London, 1996).

    Google Scholar 

  2. D. Chandler, J. Chem. Phys. 60:3500 (1974).

    Google Scholar 

  3. D. Chandler, J. Chem. Phys. 60:3508 (1974).

    Google Scholar 

  4. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  5. M. Theodosopulu and J. S. Dahler, J. Chem. Phys. 60:4048 (1974).

    Google Scholar 

  6. D. Enskog, Kungl. Sv. Vetenskapsakad. Handl. 63,No. 4 (1922).

    Google Scholar 

  7. J. H. Dymond, Physica 75:100 (1975).

    Google Scholar 

  8. J. H. Dymond, Physica B 144:267 (1987).

    Google Scholar 

  9. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int. J. Thermophys. 13:269 (1992).

    Google Scholar 

  10. M. J. Assael, J. H. Dymond, and P. M. Patterson, Int. J. Ihermophys. 13:895 (1992).

    Google Scholar 

  11. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 15:189 (1994).

    Google Scholar 

  12. M. J. Assael, E. Karagiannidis, and S. K. Polimatidou, High Temp. High Press. 25:259 (1993).

    Google Scholar 

  13. J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, Physica A 143:314 (1987).

    Google Scholar 

  14. U. V. Mardolcar and C. A. Nieto de Castro, Ber. Bunsenges. Phys. Chem. 91:152 (1987).

    Google Scholar 

  15. A. N. Gurova, Thermal Conductivity of Environmentally Acceptable Refrigerants, Ph.D. thesis (University of Lisbon, Lisbon, 1996).

    Google Scholar 

  16. A. N. Gurova, M. T. Barão, C. A. Nieto de Castro, and U. V. Mardolcar, High Temp. High Press. 26:25 (1994).

    Google Scholar 

  17. A. N. Gurova, U. V. Mardolcar, and C. A. Nieto de Castro, Thermal Conductivity 22 (Technomic, Lancaster, PA, 1994), p. 167.

    Google Scholar 

  18. A. N. Gurova, U. V. Mardolcar, and C. A. Nieto de Castro, Int. J. Thermophys. 18:1077 (1997).

    Google Scholar 

  19. M. T. Barão, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 18:419 (1997).

    Google Scholar 

  20. M. T. Barão, U. V. Mardolcar, and C. A. Nieto de Castro, Fluid Phase Equil. 150–151:753 (1998).

    Google Scholar 

  21. R. Tillner-Roth, Int. J. Thermophys. 16:91 (1995).

    Google Scholar 

  22. M. O. McLinden, M. L. Huber, and S. L. Outcalt, ASME Winter Annual Meeting, New Orleans, LA (1993), Paper 93-WA/HT-29.

  23. S. H. Kim, D. S. Kim, M. S. Kim, and S. T. Ro, Int. J. Thermophys. 14:937 (1993).

    Google Scholar 

  24. J. Yata, M. Hori, T. Kurahashi, and T. Minamiyama, Fluid Phase Equil. 80:287 (1992).

    Google Scholar 

  25. M. J. Assael, L. Karagiannidis, S. K. Polimatidou, and W. A. Wakeham, Proc. Int. Conf. CFC's, The Day After (Padova, Italy, 1994), p. 411.

    Google Scholar 

  26. A. J. Grebenkov, Y. G. Kotelevsky, V. V. Saplitza, O. V. Beljaeva, T. A. Zajatz, B. D. Timofeev, Proc. Int. Conf. CFC's The Day After, Joint Meet. IIR B1, B2, E1, and E2 (Padova, Italy, 1994), p.419.

    Google Scholar 

  27. U. Gross, Y. W. Song, and E. Hahne, Int. J. Thermophys. 13:957 (1992).

    Google Scholar 

  28. M. J. Assael, Y. Nagasaka, C. A. Nieto de Castro, R. A. Perkins, K. Ström, E. Vogel, and W. A. Wakeham, Int. J. Thermophys. 16:63 (1995).

    Google Scholar 

  29. M. J. Assael, A. Liepertz, E. MacPherson, Y. Nagasaka, C. A. Nieto de Castro, R. A. Perkins, K. Ström, E. Vogel, and W. A. Wakeham, submitted for publication.

  30. M. J. Assael, J. H. Dymond, and S. K. Polimatidou, Int. J. Thermophys. 16:761 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurova, A.N., Mardolcar, U.V. & de Castro, C.A.N. Thermal Conductivity of 1,1-Difluoroethane (HFC-152a). International Journal of Thermophysics 20, 63–72 (1999). https://doi.org/10.1023/A:1021422012447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021422012447

Navigation