Skip to main content
Log in

Nucleation in Quantum Liquids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In order to understand how nucleation proceeds in quantum liquids such as 4He and 3He, and the peculiarities of such quantum systems, I present a review of nucleation in condensed matter. By describing successive experiments, I first illustrate the interest and use of the elementary "standard theory" of nucleation. Then I consider its limitations and the existence of "spinodal" and instability limits, possibly in the frame of "density functional" methods. When finally discussing nucleation at low temperature, I consider a further improvement of the standard theory, namely the possibility of nucleation by quantum tunneling. The main emphasis is on crystallization and cavitation in liquid helium, but I also consider water, liquid hydrogen, wetting, the nucleation of steps on crystal surfaces, vortices etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Taborek, Phys. Rev. B 32, 5902 (1985).

    Google Scholar 

  2. Q. Zheng, D.J. Durben, G.H. Wolf and C.A. Angell, Science 254, 829 (1991).

    Google Scholar 

  3. S. Balibar and H.J. Maris, Physics Today 53, 29 (2000).

    Google Scholar 

  4. W.F. Pickard, Prog. Biophys. Mol. Biol. 37, 181 (1981).

    Google Scholar 

  5. L. Landau and E. Lifshitz, Statistical Physics, Chapter 162, p. 533.

  6. D.W. Oxtoby, J. Phys.: Cond. Matt. 4, 7627 (1992).

    Google Scholar 

  7. M. Blander and J.L. Katz, A.I.Ch.E. J. 21, 853 (1975).

    Google Scholar 

  8. H. Kramers, Physica (Utrecht) 7, 284 (1940).

    Google Scholar 

  9. H. Grabert, P. Olshowski and U. Weiss, Phys. Rev. B 36, 1931 (1987).

    Google Scholar 

  10. D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1948).

    Google Scholar 

  11. M.S. Pettersen, S. Balibar and H.J. Maris, Phys. Rev. B 49, 12062 (1994).

    Google Scholar 

  12. G. Seidel, H.J. Maris, F.I.B. Williams and J.G. Cardon, Phys. Rev. Lett. 56, 2380 (1986).

    Google Scholar 

  13. H.J. Maris, G. Seidel and T.E. Huber, J. Low Temp. Phys. 51, 471 (1983).

    Google Scholar 

  14. D.D. Osheroff and M. Cross, Phys. Rev. Lett. 38, 905 (1977). See also Ref. 17.

    Google Scholar 

  15. A.J. Leggett, Phys. Rev. Lett. 53, 1096 (1984).

    Google Scholar 

  16. S. Balibar, T. Mizusaki and Y. Sasaki, J. Low Temp. Phys. 120, 293 (2000).

    Google Scholar 

  17. P. Schiffer, D.D. Osheroff and A.J. Leggett, Prog. in Low Temp. Phys., Vol. XIV, ed. W.P. Halperin (Elsevier, 1995), p. 159.

  18. D. Bonn and D. Ross, Rep. Prog. Phys. 64, 1085 (2001).

    Google Scholar 

  19. D.N. Sinha, J.C. Semura and L.C. Brodie, Phys. Rev. A 26, 1048 (1982).

    Google Scholar 

  20. D. Lezak, L.C. Brodie, J.S. Semura and E. Bodegom, Phys. Rev. B 37, 150 (1988).

    Google Scholar 

  21. J.A. Nissen, E. Bodegom, L.C. Brodie and J.S. Semura, Phys. Rev. B 40, 6617 (1989).

    Google Scholar 

  22. H. Lambaré, P. Roche, S. Balibar, H.J. Maris, O.A. Andreeva, C. Guthmann, K.O. Kehsishev and E. Rolley, Eur. Phys J. B 2, 381 (1998).

    Google Scholar 

  23. F. Caupin and S. Balibar, Phys. Rev. B 64, 064507 (2001).

    Google Scholar 

  24. X. Chavanne, S. Balibar and F. Caupin, J. Low Temp. Phys. 125, 155 (2001); X. Chavanne, S. Balibar and F. Caupin, Phys. Rev. Lett. 86, 5506 (2001).

    Google Scholar 

  25. S. Balibar and P. Nozières, Sol. State Comm. 92,19 (1994).

    Google Scholar 

  26. P. Nozières, in Solids far from equilibrium, Lectures at the Beg-Rohu summer school, ed. C. Godrèche (Cambridge University Press, 1992).

  27. P.E. Wolf, F. Gallet, S. Balibar and P. Nozières, J. Physique 46, 1987 (1985).

    Google Scholar 

  28. X. Chavanne, S. Balibar and F. Caupin, J. Low Temp. Phys. 126, 615 (2002)

    Google Scholar 

  29. C. Appert, C. Tenaud, X. Chavanne, S. Balibar, F. Caupin and D. d'Humières, to be published; X. Chavanne, S. Balibar, F. Caupin, C. Appert and D. d'Humières, J. Low Temp. Phys. 126, 643 (2002).

  30. H.J. Maris and Q. Xiong, Phys. Rev. Lett. 63, 1078 (1989).

    Google Scholar 

  31. H.J. Maris, Phys. Rev. Lett. 66, 45 (1991).

    Google Scholar 

  32. D.O. Edwards and H.J. Maris, to be published.

  33. J. Boronat, J. Casulleras and J. Navarro, Phys. Rev. B 50, 3427 (1994).

    Google Scholar 

  34. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari and J. Treiner, Phys. Rev. B 52, 1193 (1995).

    Google Scholar 

  35. J. Cahn and J. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Google Scholar 

  36. H.J. Maris J. Low Temp. Phys. 94, 125 (1994).

    Google Scholar 

  37. H.J. Maris, J. Low Temp. Phys. 98, 403 (1995).

    Google Scholar 

  38. A. Guirao, M. Centelles, M. Barranco, M. Pi, A. Polls and X. Vinãs, J. Phys.: Cond. Mat. 4, 667 (1992).

    Google Scholar 

  39. For a general introduction to the physics of liquid helium, and a description of “rotons” which were introduced by Landau in 1941-47, see J. Wilks, The properties of liquid and solid helium (Clarendon Press, Oxford, 1967).

    Google Scholar 

  40. C.E. Campbell, R. Folk and E. Krotschek, J. Low Temp. Phys. 105, 13 (1996).

    Google Scholar 

  41. G.H. Bauer, D.M. Ceperley and N. Goldenfeld, Phys. Rev. B 61, 9055 (2000) and references therein.

    Google Scholar 

  42. S.C. Hall and H.J. Maris, J. Low Temp. Phys. 107, 263 (1997).

    Google Scholar 

  43. M. Guilleumas, M. Pi, M. Barranco, J. Navarro, and M.A. Solis, Phys. Rev. B 47, 9116 (1993).

    Google Scholar 

  44. M. Barranco and M. Pi, private communications (2002).

  45. S.C. Hall, J. Classen, C.K. Su and H.J. Maris, J. Low Temp. Phys. 101, 793 (1995).

    Google Scholar 

  46. F. Caupin, S. Balibar and H.J. Maris, Phys. Rev. Lett. 87, 145302 (2001).

    Google Scholar 

  47. P.G. Debenedetti and M.C. d'Antonio, J. Chem. Phys. 84, 3339 (1986) and J. Chem. Phys. 85, 4005 (1986); M.C. d'Antonio and P.G. Debenedetti, J. Chem. Phys. 86, 2229 (1987).

    Google Scholar 

  48. R.J. Speedy, J. Phys. Chem. 86, 982 (1982) and J. Phys. Chem. 86 3002 (1982).

    Google Scholar 

  49. S. Sastry, P.G. Debenedetti, F. Sciortino and H.E. Stanley, Phys. Rev. E 53, 6144 (1996).

    Google Scholar 

  50. P.R. Roach, Y. Eckstein, M.W. Meisel and L. Aniola-Jedrzejek, J. Low Temp. Phys. 52, 433 (1983).

    Google Scholar 

  51. C. Boghosian, H. Meyer and J.E. Rives, Phys. Rev. 146, 110 (1966).

    Google Scholar 

  52. M.R. Gibbs, K.H. Andersen, W.G. Stirling, and H. Schober, J. Phys.: Condens. Matter 11, 603 (1999).

    Google Scholar 

  53. M. Wanner and P. Leiderer, Phys. Rev. Lett. 42, 315 (1979); W. Ebner and P. Leiderer, Physics Letters 80A, 277 (1980).

    Google Scholar 

  54. T. Schneider and C.P. Enz, Phys. Rev. Lett. 27, 1186 (1971).

    Google Scholar 

  55. J.P. Ruutu, P.J. Halonen, J.S. Pentila, A.V. Babkin, J.P. Saramäki and E.B. Sonin, Phys. Rev. Lett. 77, 2514 (1996).

    Google Scholar 

  56. E. Varoquaux, M.W. Meisel and O. Avenel, Phys. Rev. Lett. 57, 2291 (1986); J. Steinbauer, K. Schwab, Yu. Mukharski, J.C. Davis and R.E. Packard, Phys. Rev. Lett. 74, 5056 (1995).

    Google Scholar 

  57. M.H. Devoret, J.M. Martinis and J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J.M. Martinis, M.H. Devoret and J. Clarke, Phys. Rev. Lett. 55, 1543 (1985).

    Google Scholar 

  58. L. Landau and E. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965), Chapter 7.

    Google Scholar 

  59. J.S. Langer, Ann. Phys. 41, 108 (1967)

    Google Scholar 

  60. I.M. Lifshitz and Yu. Kagan, Sov. Phys. JETP 62, 385 (1972).

    Google Scholar 

  61. S. Coleman, Phys. Rev. D 15, 2929 (1977), C.G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977)

    Google Scholar 

  62. A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

    Google Scholar 

  63. T. Nakamura, Y. Kanno and S. Takagi, Phys. Rev. B 51, 8446 (1995).

    Google Scholar 

  64. M. Guilleumas, M. Barranco, D.M. Jezek, R.J. Lombard and M. Pi, Phys. Rev. B 54, 16135 (1996).

    Google Scholar 

  65. D. Jezek, M. Pi and M. Barranco, Phys. Rev. B60, 3048 (1999).

    Google Scholar 

  66. F. Caupin, S. Balibar and H.J. Maris, J. Low Temp. Phys. 126, 91 (2001).

    Google Scholar 

  67. J. Classen, C.K. Su and H.J. Maris, Phys. Rev. Lett. 77, 2006 (1996).

    Google Scholar 

  68. D. Konstantinov, W. Homsi, J. Luzuriaga, C.K. Su, M.A. Weilert and H.J. Maris, J. Low Temp. Phys. 113, 485 (1998).

    Google Scholar 

  69. H.J. Maris, J. Low Temp. Phys. 94, 125 (1994).

    Google Scholar 

  70. F. Dalfovo, Phys. Rev. B 46, 5482 (1982).

    Google Scholar 

  71. For experiments, see V. Chagovets, I. Usherov-Marshak, G. Sheshin and A. Ya. Rudavskii, J. Low Temp. Phys. 110, 473 (1998), E. Tanaka, K. Hatakeyama, S. Noma, S.N. Burmistrov and T. Satoh, J. Low Temp. Phys. 127 81 (2002), and references therein; for theory, see D.M. Jezek, M. Pi, M. Barranco, R.J. Lombard and M. Guilleumas, J. Low Temp. Phys. 112, 303 (1998), and M. Barranco, M. Guilleumas, M. Pi, D.M. Jezek and J. Navarro Liquids under negative Pressure, NATO Science Series, eds. A.R. Imre, H.J. Maris and P.R. Williams, (Kluwer, Dordrecht, 2002) as well as M. Barranco, M. Guilleumas, M. Pi and D. Jezek Advances in quantum many-body theory, eds. by E. Krotscheck and J. Navarro (World Scientific, London, 2002), Vol. 4, Chapter 7, and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balibar, S. Nucleation in Quantum Liquids. Journal of Low Temperature Physics 129, 363–421 (2002). https://doi.org/10.1023/A:1021412529571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021412529571

Keywords

Navigation