Skip to main content
Log in

Bose-Einstein Condensates in Dilute Trapped Atomic Gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The static and dynamic behavior of dilute trapped Bose-Einstein condensates at low temperature follows from the Gross-Pitaevskii equation for the condensate and the Bogoliubov equations for the linearized small-amplitude normal modes. The uniform system serves to illustrate the theoretical methods and much of the basic physics. The principal new effect of the confining trap is to introduce an additional length scale (the size of the single-particle ground state) and energy scale (the single-particle ground-state energy). Most recent experiments use large condensates, when the repulsive interactions expand the condensate considerably and thus reduce the kinetic energy associated with the nonuniform density. In this regime (known as the "Thomas-Fermi" limit), the system can be treated as locally uniform, which greatly simplifies the analysis. When the condensate contains one or more vortex lines, the nonuniform trap potential and local line curvature drive the resulting vortex motion. Experiments have confirmed various predicted precessional motions in considerable detail. Mixtures of two distinct bosonic species allow for new coupled dynamical motions that alter the topology of the original single complex order parameter. In particular, application of near-resonant electromagnetic fields yields a coupled system that no longer has quantized circulation. Such experimental techniques created the first vortex line by spinning up one of the components. The introduction of optical traps has allowed the study of what are called "spinor" condensates. In this case, all hyperfine states are trapped, in contrast to the more common magnetic traps that confine only a subset of the various hyperfine states. The rotational invariance of the interparticle interactions significantly restricts the allowed states of these spinor condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico Fermi,” edited by M. Inguscio, S. Stringari, and C. E. Wieman (IOP Press, Amsterdam, 1999).

    Google Scholar 

  2. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Google Scholar 

  3. Y. Castin, in Coherent Atomic Matter Waves, Lecture notes of Les Houches Summer School, 1999, edited by R. Kaiser, C. Westbrook, and F. David (EDP Sciences and Springer-Verlag, 2001), pp. 1-136 (e-print:cond-mat/0105058).

  4. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, 3rd edition, Part 1 (Pergamon Press, Oxford, 1980), Chapter 5.

    Google Scholar 

  5. A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971), Chapters. 1 and 2.

    Google Scholar 

  6. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).

    Google Scholar 

  7. N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).

    Google Scholar 

  8. See, for example, in J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971), Chapters. 1 and 2 Ref. 5, Section 35 and A.L. Fetter, in Ref. 1, p. 201.

  9. E. P. Gross, Nuovo Cimento 20, 454 (1961).

    Google Scholar 

  10. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys.-JETP 13, 451 (1961)].

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon Press, London, 1987), Chapter I.

    Google Scholar 

  12. G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).

    Google Scholar 

  13. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

    Google Scholar 

  14. D. M. Stamper-Kurn, H.-J. Miesner, S. Inouye, M. R. Andrews, and W. Ketterle, Phys. Rev. Lett. 81, 500 (1998).

    Google Scholar 

  15. A. L. Fetter, Ann. Phys. (N.Y.) 70, 67 (1972).

    Google Scholar 

  16. A. L. Fetter, Phys. Rev. A 53, 4245 (1996).

    Google Scholar 

  17. C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).

    Google Scholar 

  18. S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).

    Google Scholar 

  19. J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 86, 4211 (2001).

    Google Scholar 

  20. E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Nature 412, 295 (2001).

    Google Scholar 

  21. A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect, Science 292, 461 (2001).

    Google Scholar 

  22. F. Pereira Dos Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales, E. Rasel, U. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 86, 3459 (2001).

    Google Scholar 

  23. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

    Google Scholar 

  24. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Google Scholar 

  25. A. L. Fetter and A. A. Svidzinsky, J. Phys. Cond. Matter 13, R135 (2001).

    Google Scholar 

  26. R. P. Feynman, in Progress in Low Temperature Physics, edited by C. J. Gorter (North-Holland, Amsterdam, 1955), Vol. 1, p. 17.

    Google Scholar 

  27. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996), 2nd edition, Chapters. 4 and 5.

    Google Scholar 

  28. A. A. Svidzinsky and A. L. Fetter, Phys. Rev. Lett. 84, 5919 (2000).

    Google Scholar 

  29. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).

    Google Scholar 

  30. D. L. Feder, A. A. Svidzinsky, A. L. Fetter, and C. W. Clark, Phys. Rev. Lett. 86, 564 (2001).

    Google Scholar 

  31. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, J. Mod. Opt. 47, 2715 (2000).

    Google Scholar 

  32. F. Chevy, K. W. Madison, and J. Dalibard, Phys. Rev. Lett. 85, 2223 (2000).

    Google Scholar 

  33. F. Dalfovo and S. Stringari, Phys. Rev. A 63, 011601(R) (2001).

    Google Scholar 

  34. S. Sinha and Y. Castin, Phys. Rev. Lett. 87, 190402 (2001).

    Google Scholar 

  35. K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 86, 4443 (2001).

    Google Scholar 

  36. F. Chevy, K. W. Madison, V. Bretin, and J. Dalibard, in Proceedings of Trapped Particles and Fundamental Physics Workshop (Les Houches 2001), edited by S. Atutov, K. Kalabrese, and L. Moi, e-print: cond-mat/0104218.

  37. E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard, Phys. Rev. Lett. 43, 214 (1979).

    Google Scholar 

  38. J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science 292, 476 (2001).

    Google Scholar 

  39. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 87, 210402 (2001).

    Google Scholar 

  40. P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys. Rev. Lett. 87, 210403 (2001).

    Google Scholar 

  41. T.-L. Ho, Phys. Rev. Lett. 87, 060403 (2001).

    Google Scholar 

  42. A. L. Fetter, Phys. Rev. A 64, 063608 (2001).

    Google Scholar 

  43. U. R. Fischer and G. Baym, e-print: cond-mat/0111443, v.4.

  44. M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, Phys. Rev. Lett. 77, 1671 (1996).

    Google Scholar 

  45. R. J. Dodd, K. Burnett, M. Edwards, and C. W. Clark, Phys. Rev. A 56, 587 (1997).

    Google Scholar 

  46. A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 58, 3168 (1998).

    Google Scholar 

  47. F. Zambelli and S. Stringari, Phys. Rev. Lett. 81, 1754 (1998).

    Google Scholar 

  48. P. C. Haljan, B. P. Anderson, I. Coddington, and E. A. Cornell, Phys. Rev. Lett. 86, 2922 (2001).

    Google Scholar 

  49. A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).

    Google Scholar 

  50. L. M. Pismen, Vortices in Nonlinear Fields (Clarendon Press, Oxford, 1999), Sections. 2.2 and 5.2.

    Google Scholar 

  51. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991), Chapter 6.

    Google Scholar 

  52. C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 78, 586 (1997).

    Google Scholar 

  53. D. M. Stamper-Kurn and W. Ketterle, Les Houches 1999 Summer School, Session LXXII, e-print: cond-mat/0005001.

  54. Y. A. Nepomnyashchii, Teor. Mat. Phys. 20, 399 (1974).

    Google Scholar 

  55. T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

    Google Scholar 

  56. F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4213 (1996).

    Google Scholar 

  57. B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Phys. Rev. Lett. 78, 3594 (1997).

    Google Scholar 

  58. M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari, Phys. Rev. Lett. 81, 243 (1998).

    Google Scholar 

  59. See, for example, L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987), Chapters 2 and 3.

  60. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

    Google Scholar 

  61. D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 81, 1543 (1998).

    Google Scholar 

  62. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M. J. Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 3358 (1999).

    Google Scholar 

  63. J. Williams, R. Walser, J. Cooper, E. A. Cornell, and M. Holland, Phys. Rev. A 61, 033612 (2000).

    Google Scholar 

  64. J. E. Williams and M. J. Holland, Nature 401, 568 (1999).

    Google Scholar 

  65. D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

    Google Scholar 

  66. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).

    Google Scholar 

  67. J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle, Nature 396, 345 (1998).

    Google Scholar 

  68. H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle, Phys. Rev. Lett. 82, 2228 (1999).

    Google Scholar 

  69. D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 83, 661 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetter, A.L. Bose-Einstein Condensates in Dilute Trapped Atomic Gases. Journal of Low Temperature Physics 129, 263–321 (2002). https://doi.org/10.1023/A:1021408428662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021408428662

Keywords

Navigation