Skip to main content
Log in

Dissociation Constants of Protonated Cysteine Species in NaCl Media

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The sulfur-containing biomolecule, cysteine has a role in physiological and natural environment because of its strong interactions with metals. To understand these interactions of metals with cysteine, one needs reliable dissociation constants for the protonated cysteine species [\({NH}_{3}^+ \)CH(CH2SH)COOH; H3B+]. The values of dissociated constants, p\(K_1^* \), for protonated cysteine species (H3B+ ⇄ H+ + H2B, K 1; H2B ⇄ H+ + HB,K 2; HB ⇄ H+ + B2−,K 3) were determined from potentiometric measurements in NaCl solutions as a function of ionic strength, 0.5–6.0 mol-(kgH2O)−1 and between 5, and 45°C. The equations

$$\begin{gathered} {p}K_1^* = 1.378 + 228.4/T - 0.4044I^{0.5} + 0.2472I \hfill \\ {p}K_2^* = 2.031 + 1833.4/T - 0.1847I^{0.5} + 0.2190I \hfill \\ {p}K_3^* = 2.861 + 2191.3/T - 0.2170I^{0.5} + 0.2217I \hfill \\ \end{gathered} $$

were fitted to the results with a standard errors of the fits of 0.116, 0.057, and 0.093 for \({p}K_1^* \), \({p}K_2^* \), and \({p}K_3^* \), respectively. The \({p}K_i^* \) results were used to determine new Pitzer parameters (β0, β1, and C) for the interactions of Na+ and Cl with cysteine species. These coefficients can be used to make reasonable estimates of the activity coefficients of the cysteine species and \({p}K_i^* \) for the dissociation of cysteine in physiological and natural waters containing mostly NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Saez, W. H. Bannister, and J. V. Bannister, Glutathione: Metabolism and Physiological Functions, J. Vina, ed. (CRC Press, Boca Raton, Florida, 1990), p. 237.

    Google Scholar 

  2. G. Berton, Pure Appl. Chem. 67, 1117(1995).

    Google Scholar 

  3. R. J. Huxtable, Biochemistry of Sulphur (Plenum Press, New York, 1986).

    Google Scholar 

  4. B. T. Farrer, C. P. McClure, J. E. Penner-Hahn, and V. L. Pecoraro, Inorg. Chem. 39, 5422(2000).

    PubMed  Google Scholar 

  5. H. Sies, R. Brigelius, and T. P. M. Akerboom, Function of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, eds. (Raven Press, New York, 983), p. 51.

  6. G. R. Bernard, A. P. Wheeler, M. A. Arons, P. E. Morris, H. L. Paz, J. A. Russel, and P. E. Wright, Chest 112, 164(1997).

    PubMed  Google Scholar 

  7. S. Carelli, A. Ceriotti, A. Cabibbo, G. Fassina, M. Ruvo, and R. Sitia, Science 277, 1681(1997).

    PubMed  Google Scholar 

  8. A. Albert, J. Amer. Chem. Soc. p. 690(1952).

  9. A. Cole, C. Furnival, Z.-H. Huang, C. Jones, P. M. May, G. L. Smith, J. Whittaker, and D. R. Williams, Inorg. Chim. Acta 108, 165(1985).

    Google Scholar 

  10. A. Krezel and W. Bal, Acta Biochim. Polon. 46, 567(1999).

    PubMed  Google Scholar 

  11. W.L. Hughes Jr., J. Amer. Chem. Soc. 69, 1836(1947).

    Google Scholar 

  12. R. Bensch and R. E. Bensch, Arch. Biochem. 19, 35(1948).

    Google Scholar 

  13. E. Bottari and M. R. Festa, Talanta 44, 1705(1997).

    Google Scholar 

  14. M. F. C. Leal and C. M. G. van den Berg, Aquatic Geochem. 4, 49(1998).

    Google Scholar 

  15. R. Al-Farawati and C. M. G. van den Berg, Environ. Sci. Technol. 35, 1902(2001).

    PubMed  Google Scholar 

  16. D. Tang, C-C. Hung, K. W. Warnken, and P. H. Santschi, Limnol. Oceanogr.45, 1289(2000).

    Google Scholar 

  17. I. Sovago, T. Kiss, K. Varnagy, and B. D.-L. Reverend, Polyhedron, p. 1089(1988).

  18. J. P. Hershey, M. Fernandez, and F. J. Millero, J. Solution Chem. 18, 875(1989).

    Google Scholar 

  19. T. Shibahara, Inorg. Synth. 29, 258(1992).

    Google Scholar 

  20. A. Kay and P. C. H. Mitchell, J. Chem. Soc. A, p. 2421(1970).

  21. E. I. Stefel, Progr. Inorg. Chem. 22, 1(1977).

    Google Scholar 

  22. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, Vol. I, R. M. Pytkowicz, ed. (CRC Press, Boca Raton, FL, 1979), pp. 157–208.

    Google Scholar 

  23. C. De Stefano, C. Foti, A. Gianguzza, and S. Sammartano, Marine Chem. 72, 61(2000).

    Google Scholar 

  24. C. De Stefano, P. Princi, C. Rigano, and S. Sammartano, Ann Chim. (Rome) 77, 643(1987).

    Google Scholar 

  25. F. J. Millero and D. Pierrot, Aquatic Geochem. 4, 153(1998).

    Google Scholar 

  26. N. Møller, Geochim. Cosmochim Acta 52, 821(1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Casteran, F., Millero, F.J. et al. Dissociation Constants of Protonated Cysteine Species in NaCl Media. Journal of Solution Chemistry 31, 783–792 (2002). https://doi.org/10.1023/A:1021389125799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021389125799

Navigation