Skip to main content
Log in

Spectroscopic studies of novel porphyrin-copper(II) and zinc(II) complexes that share the pinch-porphyrin family structure of iron(III) complex models of peroxidases

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Six novel pinch-porphyrin complexes [(picdien)(protoporphyrinate dimethyl ester)]copper(II) (7), [(picdien)(mesoporphyrinate dimethyl ester)]copper(II) (8) and [(picdien)(deuteroporphyrinate dimethyl ester)]copper(II) (9), [(picdien)(protoporphyrinate dimethyl ester)]zinc(II) (13), [(picdien)(mesoporphyrinate dimethyl ester)]zinc(II) (14) and [(picdien)(deuteroporphyrinate dimethyl ester)]zinc(II) (15), were prepared from the corresponding free copper(II)-porphyrins (4–6), and zinc(II)-porphyrins (10–12) and picdien (N-(3H-imidazol-4-ylmethyl)-N′-{2-[(3H-imidazol-4-ylmethyl)-amino]-ethyl}-ethane-2,3-diamine). Spectroscopic studies show that complexes (7–9) and (13–15) have the pinch-porphyrin type structure previously found in iron(III) complex models of peroxidases. Complexes (7–9), were characterized by u.v.–vis., m.c.d., and e.s.r. spectroscopy. E.s.r. spectra of the copper parent compounds (4–6) at ca. 10−2–10−4 M concentrations were typical of copper(II)-dimers. The addition of the picdien ligand broke up the dimers as detected by e.s.r. Compounds (7–9) are predominantly monomeric at ca. 10−3 M concentration. The presence of picdien in (7–9) distorts the porphyrin internal portion of the plane so as to make these four internal nitrogen atoms, coordinated to copper(II), e.s.r.-distinguishable. MO and ligand field theories were used to characterize and to evaluate the directional covalence parameters of compounds (7–9). A non-fully axial, out-of-the-porphyrin-plane bonding was found for (7–9), similar to the bonding of the pinch-porphyrins-iron(III). However the in-plane distortion produced by the presence of the picdien ligand on copper(II) is significantly larger than in pinch-porphyrin-iron(III). The n.m.r. data show that the porphyrin-zinc(II) is the less strained and has the weakest bonded structure. The coordination number of the pinch-porphyrin with iron(III), copper(II) and zinc(II), is in all cases six.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stryer, Biochemistry, Freeman and Co, 3rd edit., USA, 1988, p. 518.

  2. J.C. Kendrew, P.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davis, D.C. Phillips and V.C. Shore, Nature, 185, 422 (1960).

    Google Scholar 

  3. D. Ramírez-Rosales, Masters Thesis (Physics), Escuela Superior de Física y Matemáticas-Instituto Politécnico Nacional, México, D.F., 1995.

    Google Scholar 

  4. H.B. Gray and W.R. Ellisin, Jr., in I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, (eds), Bioinorganic Chemistry; University Science Book, USA, 1994, p. 315.

    Google Scholar 

  5. B.C. Saunders, Holmes-Sidle A.G. and B.P. Stark, Peroxidase, Butterworths, EUA, 1964, p. 1.

    Google Scholar 

  6. C. Meredith, L. Findlay, L.C. Dickinson and J.C.W. Chien, J. Am. Chem. Soc., 99, 5168 (1977).

    Google Scholar 

  7. J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo and B.J. Evans, J. Am. Chem. Soc., 103, 2884 (1981).

    Google Scholar 

  8. T.G. Traylor, W.A. Lee and D.V. Stynes, J. Am. Chem. Soc., 106, 239 (1984).

    Google Scholar 

  9. C.A. Reed and F. Guiset, J. Am. Chem. Soc., 118, 3281 (1996).

    Google Scholar 

  10. Y. Nonomura, N. Yoshioka and H. Inoue, Inorg. Chim. Acta, 224, 181 (1994).

    Google Scholar 

  11. M.W. Renner, K.M. Barkigia, Y. Zhang, C.J. Medforth, K.M. Smith and J. Fajer, J. Am. Chem. Soc., 116, 8582 (1994).

    Google Scholar 

  12. F. D'souza, G.R. Deviprasad and M.E. Zandler, J. Chem. Soc., Dalton Trans., 3699 (1997).

  13. R.P. Houser and W.B. Tolman, Inorg. Chem., 34, 1632 (1995).

    Google Scholar 

  14. B.S. Erler, W.F. Scholz, Y.J. Lee, W.R. Scheidt and C.A. Reed, J. Am. Chem. Soc., 109, 2644 (1987).

    Google Scholar 

  15. H. Fuji, Inorg. Chem., 32, 875 (1993).

    Google Scholar 

  16. M. Ravikanth, D. Reddy, A. Misra and T.K. Chandrashekar, J. Chem. Soc., Dalton Trans., 1137 (1993).

  17. H. Yokoi and M. Iwaizumi, Bull. Chem. Jpn., 53, 1489 (1980).

    Google Scholar 

  18. M.W. Renner, K.M. Barkigia and J. Fajer, Inorg. Chim. Acta, 263, 181 (1997).

    Google Scholar 

  19. M.F. Perutz, Scientific American, 239, 92 (1978).

    Google Scholar 

  20. M.M. Maltempo, T.H. Moss and M.A. Cusanovich, Biochim. Biophys. Acta, 342, 290 (1974).

    Google Scholar 

  21. M.H. Go. and M.A. Phillippi, J. Am. Chem. Soc., 105, 7567 (1983).

    Google Scholar 

  22. G.N. La Mar, M.A. Viscio, K.M. Smith, W.S. Caughey and M.L. Smith, J. Am. Chem. Soc., 100, 8085 (1978).

    Google Scholar 

  23. D. Mandon, R. Weiss, K. Jayaraj, A. Gold, J. Terner, E. Bill and A.X. Trautwein, Inorg. Chem., 31, 4402 (1992).

    Google Scholar 

  24. Y. Reyes-Ortega, C. Alvarez-Toledano, D. Ramírez-Rosales, A. Sánchez-Sandoval, E. González-Vergara and R. Zamorano-Ulloa, J. Chem. Soc., Dalton Trans., 667 (1998).

  25. E. Ahmed, C. Chartterjee, C.J. Coosksey, M.L. Tobe and G.J. Williams, Chem. Soc. Dalton Trans., 64 (1989).

  26. E. Basurto-Uribe and R. Zamorano-Ulloa, Reporte Interno, ESFM/F06/93, ESFM-IPN, México, 1993.

    Google Scholar 

  27. M.J. Nilges, Ph.D. Thesis, University of Illinois, Urbana, Illinois, (1979), (ii) R.L. Belford, M.J. Nilges, EPR Symposium, 21st Rocky Mountain Conference, Denver Colorado (1979). (iii) A.M. Maurice, Ph.D. Thesis, University of Illinois, Urbana, Illinois.

    Google Scholar 

  28. A.D. Falk, The Porphyrins and Metalloporphyrins, Elsevier, New York, 1960, p. 798.

    Google Scholar 

  29. M. Zerner and M. Gouterman, Theor. Chim. Acta, 4, 44 (1966).

    Google Scholar 

  30. M. Zerner, M. Gouterman and H. Kobayashi, Theor. Chim. Acta, 6, 363 (1966).

    Google Scholar 

  31. J.W. Owens and O'Connor, Ch. Coord. Chem. Rev., 84, 1 (1998).

    Google Scholar 

  32. M. Gouterman, in D. Dolphin (ed), The Porphyrins, Academic Press, London, 1978, vol. 4, p. 61.

    Google Scholar 

  33. F. Adar, in D. Dolphin (ed), The Porphyrins, Academic Press, New York, 1978, vol. 4, p. 167.

    Google Scholar 

  34. H. Alpsoh, D.W. Corwin, W.E. Baker and G.G. Kleinsphen, J. Am. Chem. Soc., 85, 3621 (1963).

    Google Scholar 

  35. E.I. Solomon, M.L. Kirk, D.R. Gamelis and S. Pulver, Methods Enzymol., 246, 71 (1995).

    Google Scholar 

  36. J.C. Sutherland, Methods in Enzymology, 36, Academic Press. Inc., EUA, p. 110 (1995); (b) D.M. Dooley and J.H. Dawson, Coord. Chem. Rev., 60, 1 (1994); (c) J.H. Dawson, S. Khodayan, Ch. Zhuorg and M. Sono, J. Inorg. Biochem., 45, 179 (1992).

    Google Scholar 

  37. W.R. Browett and M.J. Stillman, Inorg. Chim. Acta, 49, 69 (1981).

    Google Scholar 

  38. M.R. Cheesman, W.G. Zumft and A.J. Thomson, Biochem., 37, 3994 (1998).

    Google Scholar 

  39. G.M. Godziela and H.M. Go., J. Am. Chem. Soc., 108, 2237 (1986).

    Google Scholar 

  40. A.M. Walker, in K.M. Kadish, K.M. Smith and R. Guilard (eds), The Porphyrin Handbook Academic Press, USA, 2000, vol. 5 (n.m.r. and e.p.r.) p. 167.

    Google Scholar 

  41. P.F. Knowles, D.H. Marsh and W.E. Rattle, Magnetic Resonance of Biomolecules, Wiley, USA, 1976, p. 328.

    Google Scholar 

  42. R.S. Drago, Physical Methods in Chemistry, Saunders College Publishing, EUA 1977, p. 246.

    Google Scholar 

  43. L. Banci, Inorg. Chem., 24, 782 (1985).

    Google Scholar 

  44. R.J. Kurland, R.G. Little, D.G. Davis and Ch. Ho, Biochem., 12, 2237 (1971).

    Google Scholar 

  45. F.E. Mabbs, Chem. Soc. Rev., 313 (1993).

  46. P.R. Athappan and G. Rajagopal, Polyhedron, 15, 527 (1996).

    Google Scholar 

  47. A. McCragh, C.B. Storm and W.S. Koski, J. Am. Chem. Soc., 87, 1470 (1965).

    Google Scholar 

  48. J.A. De Bolfo, T.D. Smith, J.F. Boas and J.R. Pilbrow, J. Chem. Soc., Dalton Trans. 1523 (1975).

  49. H.R. Gersmann and J.D. Swalen, J. Chem Phys., 36, 3221 (1962).

    Google Scholar 

  50. I. Zink and R.S. Drago, J. Am. Chem Soc., 93, 4550 (1972).

    Google Scholar 

  51. A.H. Maki and B.R. McGarvey, J. Chem. Phys., 29, 35 (1958).

    Google Scholar 

  52. D. Kivelson and R. Neiman, J. Chem. Phys., 35, 149 (1961).

    Google Scholar 

  53. H.A. Kuska, M.T. Rogers and R.E. Drullinger, J. Phys. Chem., 71 (1967).

  54. E.M. Roberts and W.S. Koski, J. Am. Chem. Soc., 82, 3006 (1960).

    Google Scholar 

  55. K-E. Falk, E. Ivanova, B. Roos and T. Vänngård, Inorg. Chem., 9, 556 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gárate-Morales, J.L., Reyes-Ortega, Y., Alvarez-Toledano, C. et al. Spectroscopic studies of novel porphyrin-copper(II) and zinc(II) complexes that share the pinch-porphyrin family structure of iron(III) complex models of peroxidases. Transition Metal Chemistry 27, 906–917 (2002). https://doi.org/10.1023/A:1021377006278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021377006278

Keywords

Navigation