Skip to main content
Log in

Kinematics of the Three Moving Space Curves Associated with the Nonlinear Schrödinger Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting with the general description of a moving curve, we recently presented a unified formalism showing that three distinct space curve evolutions can be identified with a given integrable equation. Applying this to the nonlinear Schrödinger equation (NLS), we find three sets of coupled equations for the evolution of the curvature and the torsion, one set for each moving curve. The first set is given by the usual Da Rios–Betchov equations. The velocity at each point of the curve corresponding to this set is well known to be a local expression in the curve variables. In contrast, the velocities of the other two curves are nonlocal expressions. Each of the three curves is endowed with a corresponding infinite set of geometric constraints. We find these moving space curves by using their relation to the integrable Landau–Lifshitz equation. We present the three evolving curves corresponding to the envelope soliton solution of the NLS and compare their behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley, Reading, Mass. (1961).

    Google Scholar 

  2. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Google Scholar 

  3. H. Hasimoto, J. Fluid Mech., 51, 477 (1972).

    Google Scholar 

  4. M. Lakshmanan, Phys. Lett. A, 61, 53 (1977); R. Balakrishnan, J. Phys. C, 15, L1305 (1982).

    Google Scholar 

  5. J. P. Keener, Phys. D, 31, 269 (1998).

    Google Scholar 

  6. K. W. Schwarz, Phys. Rev. B, 38, 2398 (1998).

    Google Scholar 

  7. R. E. Goldstein and D.M. Petrich, Phys. Rev. Lett., 67, 3203 (1991).

    Google Scholar 

  8. L. S. Da Rios, Rend. Circ. Mat. Palermo, 22, 117 (1906).

    Google Scholar 

  9. R. Betchov, J. Fluid Mech., 22, 471 (1965); R. L. Ricca, Nature, 352, 561 (1991).

    Google Scholar 

  10. G. L. Lamb, J. Math. Phys., 18, 1654 (1977).

    Google Scholar 

  11. S. Murugesh and R. Balakrishnan, Phys. Lett. A, 290, 81 (2001); nlin.PS/0104066 (2001).

    Google Scholar 

  12. R. Balakrishnan, A. R. Bishop, and R. Dandoloff, Phys. Rev. B, 47, 3108 (1993); Phys. Rev. Lett., 64, 2107 (1990); R. Balakrishnan and R. Blumenfeld, J. Math. Phys., 38, 5878 (1997).

    Google Scholar 

  13. J. Langer and R. Perline, J. Math. Phys., 35, 1732 (1993).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Phys. Z. Sow., 8, 153 (1935).

    Google Scholar 

  15. L. A. Takhtajan, Phys. Lett. A, 64, 235 (1977).

    Google Scholar 

  16. V. E. Zakharov and L. A. Takhtadzhyan, Theor. Math. Phys., 38, 17 (1979).

    Google Scholar 

  17. J. Tjon and J. Wright, Phys. Rev. B, 15, 3470 (1977).

    Google Scholar 

  18. S. Murugesh and R. Balakrishnan, Eur. Phys. J. B, 29, 193 (2002); nlin.PS/0111052 (2001).

    Google Scholar 

  19. A. Sym, Lett.Nuovo Cimento, 22 420 (1978).

    Google Scholar 

  20. D. Levi, A. Sym, and S. Wojciechowski, Phys. Lett. A, 94, 408 (1983).

    Google Scholar 

  21. E. J. Hopfinger and F. K. Browand, Nature, 295, 393 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, R., Murugesh, S. Kinematics of the Three Moving Space Curves Associated with the Nonlinear Schrödinger Equation. Theoretical and Mathematical Physics 133, 1609–1618 (2002). https://doi.org/10.1023/A:1021354006587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021354006587

Navigation