Skip to main content
Log in

Dielectric Relaxation of Aqueous Trimethylamineoxide Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Dielectric relaxation was examined for aqueous trimethylamineoxide (TMAO) solutions over a wide concentration (c) range. The dielectric relaxation of TMAO was described by a Debye-type function with a relaxation time of about 3 × 10−11 s, with the strength proportional to c. The number of water molecules tightly hydrated to unprotonated TMAO was estimated to be two. Ab initio calculations predict the magnitudes of the dipoles for individual TMAO and TMAO tightly hydrated by two water molecules, to be 4.9 and 4.2 D, respectively. When the amount of HBr added was increased, dielectric spectra were described by two modes with relaxation times, about 3 × 10−11 and the about 8 × 10−10. The fast relaxation was assigned to the rotational mode of unprotonated TMAO tightly hydrated by two water molecules, and the slow mode to the rotational mode of dimers formed between a protonated and unprotonated TMAO due to hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Daniel, Dielectric Relaxation (Academic Press, New York, 1967).

    Google Scholar 

  2. V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov, Dipole Moments in Organic Chemistry, W. E. Vaughan, Transl edn. (Plenum, New York, 1970).

    Google Scholar 

  3. E. A. S. Cavell, P. C. Knight, and M. A. Sheikh, Trans. Faraday Soc. 67, 2225(1971).

    Google Scholar 

  4. J. Barthel, H. Hetzenauer, and R. Buchner, Ber. Bunsen-Ges. Phys. Chem. 96, 988(1992).

    Google Scholar 

  5. T. Shikata, S. Imai, and S. Shiokawa, Phys. Chem. B 105, 4495(2001).

    Google Scholar 

  6. E. P. Linton J. Amer. Chem. Soc. 62, 1945(1940).

    Google Scholar 

  7. G. M. Philips, J. S. Hunter, and L. E. Sutton, J. Chem. Soc., p. 146(1945).

  8. A. Haaland, H. Tomassen, and Y Stengstroem, J. Mol. Struct. 263, 299(1991).

    Google Scholar 

  9. R. Noto, V. Martorana, A. Emanuele, and S. L. Fornili, J. Chem. Soc. Faraday Trans. 91, 3803(1995).

    Google Scholar 

  10. K. M. Kast, S. Reiling, and J. Brickmann, J. Mol. Struct. 453, 169(1998).

    Google Scholar 

  11. S. F. Boys and F. Bernardi, Mol. Phys. 19, 533(1970).

    Google Scholar 

  12. H. Fröhlich, Theory of Dielectrics (Oxford University Press, London, 1958).

    Google Scholar 

  13. L. Onsager, J. Amer. Chem. Soc. 58, 1486(1936).

    Google Scholar 

  14. J. G. Kirkwood, J. Chem. Phys. 7, 911(1939).

    Google Scholar 

  15. R. Buchner, J. Barthel, and J. Stauber, Chem. Phys. Lett. 306, 57(1999).

    Google Scholar 

  16. U. Kaatze and R. Pottel, J. Mol. Liquids 49, 225(1991).

    Google Scholar 

  17. J. N. Israelachivili, Intermolecular and Surface Forces, (Academic Press, New York, 1985), Chap.4.

    Google Scholar 

  18. R. Pottel, Water, Vol. 3, F. Franks, f. ed. (Plenum, New York, 1973), Chap. 8.

    Google Scholar 

  19. T. Shikata and S Imai, Langmuir 14, 6804(1998).

    Google Scholar 

  20. S. Imai and T. Shikata, Langmuir 15, 8388(1999).

    Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burrant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A. 7 (Gaussian, Pittsburgh, PA, 1998).

    Google Scholar 

  22. T. Clark, A Handbook of Computational Chemistry (Wiley, New York, 1985), Chap. 5.

    Google Scholar 

  23. C. Møller, M. S. Plesset, Phys. Rev. 46, 618(1934).

    Google Scholar 

  24. H. Yoshida and H. Matsuura, J. Phys. Chem. 102, 2691(1998).

    Google Scholar 

  25. T. C. W. Mak, J. Mol. Struct. 178, 169(1988).

    Google Scholar 

  26. K. M. Harmon and J. Harmon, J. Mol. Struct. 78, 43(1982).

    Google Scholar 

  27. J. L. Oncley, Chem. Rev. 30, 433(1942).

    Google Scholar 

  28. R. Pethig, Dielectric and Electric Properties of Biological Materials, (Wiley, New York, 1979), Chap. 3.

    Google Scholar 

  29. Z. Mielke, Spectrochim. Acta 42A, 673(1986).

    Google Scholar 

  30. U. Kaatze, Ber Bunsen-Ges. Phys. Chem. 77, 447(1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shikata, T., Itatani, S. Dielectric Relaxation of Aqueous Trimethylamineoxide Solutions. Journal of Solution Chemistry 31, 823–844 (2002). https://doi.org/10.1023/A:1021349411687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021349411687

Navigation