Skip to main content
Log in

Effect of molecular association and reactivity on substitution in chromium(III)–salprn complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A new chromium(III)–Schiff base complex, [Cr(5-chlorosalprn)(H2O)2]ClO4, where salprn = N,N′-propylenebis(salicylideneimine) has been prepared and characterized by electrospray ionization mass spectrometric (ESIMS) analysis and other spectroscopic techniques. Single crystal X-ray data reveal that the complex assumes a trans-diaquo structure, [Cr(C17H18Cl2N2O4)]ClO4 · H2O. The effect of phenyl ring substituents on the rate of formation of [O=CrV Schiff base]+ has been investigated. The bimolecular rate constant for the formation of O=CrV species by the [Cr(Schiff base)(H2O)2]ClO4, where the Schiff base = salprn, (1) and 5-chlorosalprn, (2) with PhOI was compared. In the case of (2) the rate was found to be faster by an order of magnitude at pH = 4 compared to (1). The introduction of a chloro-substituent on the phenyl ring not only influences the rate of redox reactivity but also the pKa values of aquo ligands of the complexes, indicating the difference in the electronic environment around the metal ion in both (1) and (2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trofimenko, Chem. Rev., 93, 943 (1993); (b) N. Kitajima and W.B. Tolman, Prog. Inorg. Chem., 43, 419 (1995).

    Google Scholar 

  2. B.B. Corden, R.S. Drago and R.P. Perito, J. Am. Chem. Soc., 107, 2903 (1985).

    Google Scholar 

  3. A. Nishinaga and H. Tonnia, J. Mol. Catal., 7, 179 (1980).

    Google Scholar 

  4. D.E. Wigley, Prog. Inorg. Chem., 42, 239 (1994).

    Google Scholar 

  5. W.A. Nergent and B.C. Haymore, Coord. Chem. Rev., 31, 123 (1980).

    Google Scholar 

  6. M. Kanthimathi, V. Subramanian and B.U. Nair, J. Indian Chem. Soc., 77, 407 (2000).

    Google Scholar 

  7. J.M. McInnes, D. Swallow, A.J. Blake and P. Mountford, Inorg. Chem., 37, 5970 (1998).

    Google Scholar 

  8. L. Mishra, A. Jha and A.K. Yadav, Transition Met. Chem., 22, 406 (1997).

    Google Scholar 

  9. M.G. Bhowon, H. Li Kam Wah and R. Narain, Polyhedron, 18, 341 (1999).

    Google Scholar 

  10. R.H. Niswander and A.E. Martell, Inorg. Chem., 17, 2341 (1978).

    Google Scholar 

  11. C. Floriani and F. Calderazzo, J. Chem. Soc. A, 946 (1969).

  12. D.A. Atwood, Coord. Chem. Rev., 165, 69 (1997).

    Google Scholar 

  13. M.M. Bhadbhade and D. Srinivas, Inorg. Chem., 32, 5458 (1993).

    Google Scholar 

  14. R.H. Holm, Chem. Rev., 87, 1401 (1987).

    Google Scholar 

  15. B.B. Cordon, R.S. Drago and R.P. Perito, J. Am. Chem. Soc., 107, 2903 (1985).

    Google Scholar 

  16. S. Wingerter, M. Pfeiffer, A. Murso, C. Lustig, T. Stey, V. Chandrasekar and D. Stalke, J. Am. Chem. Soc., 123, 1381 (2001).

    Google Scholar 

  17. R. Koerner, J.L. Wright, X.D. Ding, M.J.M. Nesset, K. Aubrecht, R.A. Waston, R.A. Barber, L.M. Mink, A.R. Tipton, C.J. Norvell, K. Skidmore, U. Simonis and F.A. Walker, Inorg. Chem., 37, 733 (1998).

    Google Scholar 

  18. M. Kanthimathi, B.U. Nair, T. Ramasami, J. Jeyakanthan and D. Velmurugan, Transition. Met. Chem., 25, 145 (2000).

    Google Scholar 

  19. H.E. Baumgather, (Ed.) Organic Synthesis, Wiley, New York, London. 1993, Coll. vol. 5, p. 658.

    Google Scholar 

  20. M. Kanthimathi, B.U. Nair, T. Ramasami, T. Shibahara and T. Tada, Proc. Indian Acad. Sci., 109, 235 (1997).

    Google Scholar 

  21. P. Pfeiffer and H. Thielert, J. Prakt. Chem., 149, 242 (1937); (b) M. Clemente-Leon, E. Coronado, J.R. Galan-Mascaros, C.J. Gomey-Garcia, Th. Woike and J.M. Clemente-Juan, Inorg. Chem., 40, 87 (2001).

    Google Scholar 

  22. F. Hein, S. Herzog, in G. Brauer (Ed.) Handbook of Preparative Inorganic Chemistry, 2nd edit., Academic Press, New York, 1965, vol. 2, p. 1301.

    Google Scholar 

  23. B.A. Frenz, The Enraf-Nonus CAD-4 software, version 5.0, Enraf No.us, Delft. The Netherlands, 1989.

  24. A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Crystallogr. A, 24, 351 (1968).

    Google Scholar 

  25. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963; J.R. Durig, W.A.Mc-Allister and E.E. Mercer, J. Inorg. Nucl. Chem. 25, 51 (1986).

    Google Scholar 

  26. E. Larsen, Acta Chem. Scand., 23, 2158 (1969).

    Google Scholar 

  27. G.M. Sheldrick, Acta Crystallogr. A, 46, 467 (1990).

    Google Scholar 

  28. B.U. Nair, M. Kanthimathi, K. Chandra Raj and T. Ramasami, Proc. Indian Acad. Sci. 106, 681 (1994).

    Google Scholar 

  29. K.P. Madhusudanan, S.B. Kalli, R. Vijayalakshmi and B.U. Nair, J. Mass Spectrum., 34, 880 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanthimathi, M., Jebanesan, D., Nair, B.U. et al. Effect of molecular association and reactivity on substitution in chromium(III)–salprn complexes. Transition Metal Chemistry 27, 895–901 (2002). https://doi.org/10.1023/A:1021320804460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021320804460

Keywords

Navigation