Skip to main content
Log in

Protonation of ferrocene, ruthenocene, and osmocene: a density functional study

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Protonated forms of the ferrocene, ruthenocene, and osmocene molecules in the gas phase were calculated using the density functional approach with the Becke—Lee—Young—Parr functional. The proton affinity energies of ferrocene, ruthenocene, and osmocene were estimated at 214.2, 220.3, and 229.7 kcal mol–1, respectively. The addition of a proton to carbon atoms of the cyclopentadienyl ring in the ferrocene molecule and to the metal atom in the ruthenocene and osmocene molecules is more energetically favorable. No minimum corresponding to ring protonation was located on the potential energy surface of protonated osmocene. The C—H endo bond in the ring-protonated [C10H11M]+ (M = Fe, Ru) cations is involved in agostic interaction with the metal atom. Transition states of interconversions between the ring-protonated and metal-protonated forms were identified. A specific group of protonated forms of the ferrocene and ruthenocene molecules includes four types of structures, viz., ring-protonated (1a,b) and metal-protonated (2a,b) structures, transition states of the 1 ⇌ 2 interconversion (3a,b), as well as ring-protonated structures with the cyclopentadiene ring folded along the C(2)—C(5) line so that the M—H endo interaction is virtually negligible. The latter structures are required for [1,5]-sigmatropic shift of the exo-hydrogen atom in the Cp ring to occur. The results obtained were used for the interpretation of the available schemes of electrophilic substitution reactions in metallocenes and of the sigmatropic shift mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Watts, in Comprehensive Organometallic Chemistry; Eds. G. Wilkinson, F. G. A. Stone, and E. N. Abel, Pergamon, New York, 1982, 8, Ch. 59, 1019.

    Google Scholar 

  2. J. H. Richards, Abstr. 135-th Meeting Am. Chem. Soc., April 1959, 86.

  3. R. A. Benkeser, Y. Nagai, and J. Hooz, J. Am. Chem. Soc., 1964, 86, 3742.

    Google Scholar 

  4. K. L. Rinehart, D. E. Bublitz, and D. H. Gustafson, J. Am. Chem. Soc., 1963, 85, 970.

    Google Scholar 

  5. M. Rosenblum and F. W. Abbate, J. Am. Chem. Soc., 1966, 88, 4178.

    Google Scholar 

  6. J. C. Ware and T. G. Traylor, Tetrahedron Lett., 1965, 1295.

  7. M. Rosenblum, J. O. Santer, and W. G. Howells, J. Am. Chem. Soc., 1963, 85, 1450.

    Google Scholar 

  8. T. J. Curphey, J. O. Santer, and M. Rosenblum, J. Am. Chem. Soc., 1960, 82, 5249.

    Google Scholar 

  9. E. G. Perevalova and T. V. Nikitina, in Organometallic Reactions, Eds. E. I. Becker and M. Tsutsui, Wiley-Interscience, New York, 1972, 4, 175.

    Google Scholar 

  10. A. F. Cunningham, J. Am. Chem. Soc., 1991, 113, 4864.

    Google Scholar 

  11. A. F. Cunningham, Organometallics, 1994, 13, 2480.

    Google Scholar 

  12. A. F. Cunningham, Organometallics, 1997, 16, 1114.

    Google Scholar 

  13. U. T. Mueller-Westerhoff, G. F. Haas, G. F. Swiegers, and T. K. Leipert, J. Organomet. Chem., 1994, 472, 229.

    Google Scholar 

  14. M. L. McKee, J. Am. Chem. Soc., 1993, 115, 2818.

    Google Scholar 

  15. M. J. Mayor-Lopez, J. Weber, B. Mannfors, and A. F. Cunningham, Organometallics, 1998, 17, 4983.

    Google Scholar 

  16. M. J. Mayor-Lopez, H. P. Luthi, H. Koch, P. Y. Morgantini, and J. Weber, J. Chem. Phys., 2000, 113, 8009.

    Google Scholar 

  17. A. Karlsson, A. Broo, and P. Ahlberg, Can. J. Chem., 1999, 77, 628.

    Google Scholar 

  18. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Google Scholar 

  19. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B, 1988, 150, 785.

    Google Scholar 

  20. Niu Shuqiang and M. B. Hall, Chem. Rev., 2000, 100, 353.

    Google Scholar 

  21. T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Plenum, New York, 1976, 1.

    Google Scholar 

  22. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

    Google Scholar 

  23. C. Peng and H. B. Schlegel, Israel J. Chem., 1993, 33, 449.

    Google Scholar 

  24. GAUSSIAN 98, Revision A. 5, Gaussian, Inc., Pittsburgh PA, 1998.

  25. M. S. Foster and J. L. Beuchamp, J. Am. Chem. Soc., 1975, 97, 4814.

    Google Scholar 

  26. M. G. Ikonomou, J. Sunner, and P. Kebarle, J. Phys. Chem., 1988, 92, 6308.

    Google Scholar 

  27. M. Meot-Ner (Mautner), J. Am. Chem. Soc., 1989, 111, 2830.

    Google Scholar 

  28. D. M. P. Mingos, in Comprehensive Organometallic Chemistry, Eds. G. Wilkinson, F. G. A. Stone, and E. N. Abel, Pergamon: New York, 1982, 3, Ch. 19.4.5.

    Google Scholar 

  29. R. H. Crabtree and D. G. Hamilton, Adv. Organomet. Chem., 1968, 28, 299.

    Google Scholar 

  30. J. A. M. Simões and J. L. Beauchamp, Chem. Rev., 1990, 90, 629.

    Google Scholar 

  31. L. M. Epshtein, L. D. Ashkinadze, S. O. Rabicheva, and L. A. Kazitsyna, Doklady Akad. Nauk SSSR, 1970, 190, 128 [Dokl. Chem., 1970 (Engl. Transl.)].

    Google Scholar 

  32. B. Floris, G. Illuminati, and G. Ortaggi, Tetrahedron Lett., 1972, 269.

  33. G. Gerichelli, G. Illuminati, G. Ortaggi, and A. M. Giuliani, J. Organomet. Chem., 1977, 127, 357.

    Google Scholar 

  34. T. E. Bitterwolf and A. C. Ling, J. Organomet. Chem., 1972, 40, 197.

    Google Scholar 

  35. L. M. Epshtein and E. S. Shubina, Metalloorg. Khim., 1992, 5, 61 [Organomet. Chem. USSR, 1992, 5 (Engl. Transl.)].

    Google Scholar 

  36. L. M. Epstein, A. N. Krylov, and E. S. Shubina, J. Mol. Struct., 1999, 322, 345.

    Google Scholar 

  37. V. N. Setkina and D. N. Kursanov, Usp. Khim., 1968, 37, 1729 [Russ. Chem. Rev., 1968, 37 (Engl. Transl.)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, Y.A., Ustynyuk, N.A. Protonation of ferrocene, ruthenocene, and osmocene: a density functional study. Russian Chemical Bulletin 51, 1900–1908 (2002). https://doi.org/10.1023/A:1021312820893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021312820893

Navigation