Skip to main content
Log in

Ruthenium(II) carbonyl complexes containing tridentate Schiff bases

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New ruthenium(II) complexes, [Ru(CO)(B)(LL′)(PPh3)] (where, LL′ = tridentate Schiff bases; B = PPh3, pyridine, piperidine or morpholine) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with Schiff bases containing donor groups (O, N, X) viz., salicylaldehyde thiosemicarbazone (X = S), salicylaldehyde semicarbazone (X = O), o-hydroxyacetophenone thiosemicarbazone (X = S) and o-hydroxyacetophenone semicarbazone (X = O). The new complexes were characterised by elemental analysis, spectral (i.r., 1H- and 31P-n.m.r.), data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.X. West, A.E. Libertia, S.B. Padhye, P.B. Chikate and A.S. Sonawane, Coordin. Chem. Rev., 123, 49 (1993).

    Google Scholar 

  2. M.J.M. Campbell, Coordin. Chem. Rev., 15, 279 (1975).

    Google Scholar 

  3. D.R. Williams, Chem. Rev., 72, 203 (1972).

    Google Scholar 

  4. A. Furst and R.T. Haro, Prog., Exp. Tumor Res., 12, 102 (1969).

    Google Scholar 

  5. F.B. Dwyer, E. Mayhew, E.M.F. Roe and A. Shulman, Brit. J. Cancer, 19, 195 (1965).

    Google Scholar 

  6. R.C. Mishra, B.K. Mohapatra and D. Panda, J. Ind. Chem. Soc., LX, 80 (1983).

    Google Scholar 

  7. B.V. Agarwala and S. Hingorani, J. Ind. Chem. Soc., 74, 289 (1997).

    Google Scholar 

  8. P. Patel and B.V. Agarawala, Syn. React. Inorg., Met., 26, 1637 (1996).

    Google Scholar 

  9. S. Chandra and R. Singh, Indian J. Chem., 27A, 417 (1988).

    Google Scholar 

  10. K. Singh, B.V. Agarwala and G.A Nagana Gowda, Indian J. Chem, 35A, 66 (1996).

    Google Scholar 

  11. A. Saxena, J.K. Koacher and J.P. Tandon, J. Antibact. Antifung. Ag., 9, 435 (1981).

    Google Scholar 

  12. N.N. Orlova, V.A. Aksenova, D.A. Selidovkin, N.S. Bagdanova and G.N. Pershin, Russ. Pharm. Toxico, 348 (1968).

  13. K. Butler, US patent No. 3, 382, 266 (1968).

  14. D.J. Bauer, L. St. Vincent, C.H. Kempe and A.W. Downe, Lancet, 20, 494 (1963).

    Google Scholar 

  15. H.G. Petering, H.H. Buskik and G.E. Underwood, Cancer Res., 64, 367 (1964).

    Google Scholar 

  16. C.W. Johnson, J.W. Jolyner and R.P. Perry, Antibiot. Chemother., 2, 636 (1952).

    Google Scholar 

  17. B.G. Benns, B.A. Gingers and C.H. Bayley, Appl. Microbiol., 8, 353 (1961).

    Google Scholar 

  18. M.A. Ali and S.E. Livingstone, Coordin. Chem. Rev., 13, 101 (1974).

    Google Scholar 

  19. M.S. Raizada and M.N. Srinivastava, Syn. React. Inorg. Met., 22, 393 (1993).

    Google Scholar 

  20. K. Singh, R.V. Singh and J.P. Tandon, Syn. React. Inorg. Met., 17, 385 (1987).

    Google Scholar 

  21. F. Basuli, S.M. Peng and S. Bhattacharya, Inorg. Chem., 36, 5645 (1997).

    Google Scholar 

  22. V. Chinnusamy and K. Natarajan, Syn. React. Inorg. Met., 23, 889 (1993).

    Google Scholar 

  23. F. Basuli, M. Ruf, C.G. Pipernot and S. Bhattacharya, Inorg. Chem., 37, 6113 (1998).

    Google Scholar 

  24. N. Dharmaraj and K. Natarjan, Syn. React. Inorg. Met., 27, 601 (1997).

    Google Scholar 

  25. P.W. Sadler, J. Chem. Soc. (A), 957 (1961).

  26. A.I. Vogel, Textbook of PracticalOrganic Chemistry, Longman, London, 1989.

    Google Scholar 

  27. N. Ahmad, J.J. Levison, S.D. Robinson and M.F. Uttley, Inorg. Synth., 5, 48 (1974).

    Google Scholar 

  28. S. Gopinathan, I.R Unny, S.S. Deshpande and C. Gopinathan, Indian J. Chem., 25A, 1015 (1986).

    Google Scholar 

  29. A. Garg and J.P. Tandon, Syn. React. Inorg. Met., 18, 705 (1988).

    Google Scholar 

  30. R. Harikumar Varma and C.P. Prabhakaran, Indian J. Chem., 28A, 1119 (1989).

    Google Scholar 

  31. K. Veno and A.E. Martell, J. Phy. Chem., 60, 1230 (1956).

    Google Scholar 

  32. B. Samuel, R. Smith, C. Sommerfield and K. Wade, J. Chem. Soc. (A), 2019 (1970).

  33. S. Kato, A. Hori, H. Shiotani and M. Mizutta, J. Organometal. Chem., 82, 223 (1974).

    Google Scholar 

  34. D.M. Wiles, B.A. Gingras and T. Suprunchuk, Can. J. Chem., 45, 469 (1967).

    Google Scholar 

  35. M. Mashima, Bull. Chem. Soc. Japan, 37, 974 (1964).

    Google Scholar 

  36. A. Yamaguchi, R.B. Penland, S. Mizushima, T.J. Lane, C. Curran and J.U. Quaglino, J. Amer. Chem. Soc., 80, 527 (1958).

    Google Scholar 

  37. C.K. Jorgenson, Absorption Spectra and ChemicalBonding in Complexes, Pergamon, London, 1964.

    Google Scholar 

  38. R.K. Poddar, K.P. Sharma and U.C. Sharma, Polyhedron, 4, 1419 (1985).

    Google Scholar 

  39. M. Das and S.E. Livingstone, Coordin. Chem. Rev., 13, 101 (1974).

    Google Scholar 

  40. R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds, 5th ed., Wille, Newyork, 1991.

    Google Scholar 

  41. N. Dharmaraj and K. Natarajan, Transition Met. Chem., 26, 105 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangadurai, T.D., Natarajan, K. Ruthenium(II) carbonyl complexes containing tridentate Schiff bases. Transition Metal Chemistry 27, 840–843 (2002). https://doi.org/10.1023/A:1021310829414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021310829414

Keywords

Navigation