Some aspects of photosynthetic characteristics in a set of perennial irrigation reservoirs located in five river basins in Sri Lanka

Abstract

Phytoplankton primary productivity of eleven irrigation reservoirs located in five river basins in Sri Lanka was determined on a single occasion together with light climate and nutrient concentrations. Although area-based gross primary productivity (1.43–11.65 g O2 m−2 d−1) falls within the range already established for tropical water bodies, net daily rate was negative in three water bodies. Light-saturated optimum rates were found in water bodies, with relatively high algal biomass, but photosynthetic efficiency or specific rates were higher in water bodies with low algal biomass, indicating nutrient limitation or physiological adaptation of phytoplankton. Concentrations of micronutrients and algal biomass in the reservoirs are largely altered by high flushing rate resulting from irrigation release. Underwater light climate and nutrient availability control the rate of photosynthesis and subsequent area-based primary production to a great extent. However, morpho-edephic index or euphotic algal biomass in the most productive stratum of the water column is not a good predictor of photosynthetic capacity or daily rate of primary production of these shallow tropical irrigation reservoirs.

This is a preview of subscription content, access via your institution.

References

  1. Amarasinghe, U. S., H. H. Costa & M. J. S. Wijeyaratne, 1983. Limnology and fish production potential of some reservoirs in Anuradhapura District, Sri Lanka. J. Inland. Fish. 2: 14–29.

    Google Scholar 

  2. Amarasinghe, U. S., C. Nissanka & S. S. De Silva, 2001. Fluctuation in water level in shallow irrigation reservoirs: Implications on fish yield estimates and fisheries management. In De Silva, S. S. (ed.), Reservoir and Culture-based Fisheries: Biology and Management. ACIAR Publication No 98, Canberra, Australia: 101–110.

  3. APHA, 1989. Standard Methods for Examination of Water and Wastewater. 17th edn. American Public Health Association, Washington DC.

    Google Scholar 

  4. Bootsma, H. A., M. J. Bootsma & R. E. Hecky, 1996. The chemical composition of precipitation and its significance to the nutrient budget of Lake Malawi. In Johnson, T. C. & E. O. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Amsterdam: 251–265.

    Google Scholar 

  5. Carignan, R. & D. Planas, 1994. Recognition of nutrient and light limitation in turbid mixed layers. Three approaches compared in the Parana floodplain (Argentina). Limnol. Oceanogr. 39: 439–443.

    Google Scholar 

  6. Crutzen, P. J. & M. O. Andreae, 1990. Biomass burning in the tropics: impacts on atmospheric chemistry and biogeochemical cycles. Science 250: 1669–1678.

    Google Scholar 

  7. De Silva, S. S., U. S. Amarasinghe, C. Nissanka, W. A. D. D. Wijesooriya & M. J. J. Fernando, 2001. Use of geographical information systems as a tool for predicting fish yield in tropical reservoirs: case study on Sri Lankan reservoirs. Fish. Manage. Ecol. 8: 47–60.

    Google Scholar 

  8. Dokulil, M., K. Bauer & E. I. L. Silva, 1983. An assessment of the phytoplankton biomass and primary productivity of Parakrama Samudra, a shallow manmade lake in Sri Lanka. In Schiemer, F. (ed.), Limnology of Parakrama Samudra – Sri Lanka A Case Study of an Ancient Man-made Lake in the Tropics. Dev. Hydrobiol. 12: 49–76.

  9. Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity, not the morphoedaphic index. Can. J. Fish. aquat. Sci. 47: 1929-1936.

    Google Scholar 

  10. Duncan, A. & J. Kubecka, 1995. Land/water ecotone effects in reservoirs on the fish fauna. Hydrobiologia 303: 11–30.

    Google Scholar 

  11. Erikson, R., E. Hooker & M. Meija, 1991. The dynamics of photosynthetic activity in Lake Xolotlan (Nicaragua), Verh. int. Ver. Limnol. 24: 1163–1169.

    Google Scholar 

  12. Ganf, G. G., 1974a. Rates of oxygen uptake by the planktonic community of a shallow equatorial lake (Lake George, Uganda). Oecologia 15: 17–32.

    Google Scholar 

  13. Ganf, G. G., 1974b. Incident solar irradiance and under water light penetration as factors controlling the Chlorophyll-a content of a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 593–609.

    Google Scholar 

  14. Ganf, G. G. & P. Blazka, 1974. Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake Gorge, Uganda) Limnol. Oceanogr. 19: 313–326.

    Google Scholar 

  15. Ganapati, S. V., A. Sreenivasan, 1970. Energy flow in natural aquatic ecosystems in India. Arch. Hydrobiol. 66: 458–98.

    Google Scholar 

  16. Gliwicz, Z. M., 1976. Plankton photosynthetic activity and its regulation in two neotropical man-made lakes. Ploska Arch. Hydrobiol. 23: 61–93.

    Google Scholar 

  17. Gunatilaka, A., 1983. Phosphorus and phosphatase dynamics in Parakrama Samudra based on diurnal observations. In Schiemer, F. (ed.), Limnology of Parakrama Samudra – Sri Lanka a case study of an ancient man-made lake in the tropics. Dev. Hydrobiol. 12: 35–47.

  18. Gunatilaka, A. & C. Senaratne, 1981. Parakrama Samudra (Sri Lanka) Project, a study of tropical lake ecosystem II. Chemical environment with special reference to nutrients. Verh. int. Ver. Limnol. 21: 1000–1006.

    Google Scholar 

  19. Gunawardhana, H. D. & A. M. K. R. Adikari, 1981. Studies on the quality of irrigation waters in Kala Wewa area. J. Nat. Sci. Coun. Sri Lanka. 9: 121–148.

    Google Scholar 

  20. Hanson, L. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and yield. Can. J. Fish. aquat. Sci. 39: 257–263.

    Google Scholar 

  21. Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. 10: 1–171.

    Google Scholar 

  22. Khondker, M. & L. Parveen, 1993. Daily rate of primary productivity in hypertrophic Dhanmondi Lake. In Tilzer, M. M., M. Tilzer & M. Khondker (eds), Hypertrophic and Polluted Freshwater Ecosystems: Ecological Bases forWater-Resource Management. Department of Botany, University of Dhaka, Dhaka, Bangladesh: 181–191.

    Google Scholar 

  23. Lemoalle, J., 1973. Lénergic lumineuse ef l'activite photosynthetique du phytoplankton dans le lac Tchad. Cah. ORSTOM ser. Hydrobiol. 7, 95–116.

    Google Scholar 

  24. Lemoalle, J., 1979. Biomasse et production phytoplanctoniques. du. Lac. Tchad 1968-1976). Relations avec les conditions du milieu. Paris. ORSTOM.

    Google Scholar 

  25. Lemoalle, J., 1981. Photosynthetic production and phytoplankton in the euphotic zone of some African and temperate lakes. Rev. Hydrobiol. trop. 11: 31–38.

    Google Scholar 

  26. Lemoalle, J., 1983. Phytoplankton Production. In Carmouse, J. P., J. R. Durand & C. Leveque (eds), Lake Chad. Ecology and Productivity of a Shallow Tropical Ecosystems. Monogr. Biologicae 53, The Hague, Junk Publishers: 357–384.

    Google Scholar 

  27. Lewis, W. M., 1974. Primary production in the plankton community of a tropical lake, Ecol. Monogr. 44: 377–409.

    Google Scholar 

  28. Lewis, W. M., 1981. Precipitation chemistry and nutrient loading by precipitation in a tropical watershed (Venezuela). Wat. Resour. Res. 17: 169–181.

    Google Scholar 

  29. Lewis, W. M. & F. H. Weibezahn, 1981. Chemistry of a 7.5 m sediment core from Lake Valencia, Venezuela. Limnol. Oceanogr. 26: 907–924.

    Google Scholar 

  30. Marker, A. F. H., C. A. Crowther & J. M. Gunn, 1980. Methanol and Acetone as solvents for estimating chlorophyll-a and phaeopigments by spectrophotometry. Arch. Hydrobiol. (Suppl.) 14: 52–69.

    Google Scholar 

  31. Melack, J. M., 1976. Primary productivity and fish yields in tropical lakes. Trans. am. Fish. Soc. 105: 575–580.

    Google Scholar 

  32. Melack, J. M. & T. R. Fisher, 1983. Diel oxygen variations and their ecological implications in Amazon floodplain lakes. Arch. Hydrobiol. 98: 422–442.

    Google Scholar 

  33. Mukankomeje, R., P. D. Plisner, J. P. Descy & L. Massault, 1993. Lake Muzahi, Rwanda limnological features and phytoplankton production. Hydrobiologia 257: 107–120.

    Google Scholar 

  34. Nissanka, C., U. S. Amarasinghe & S. S. De Silva, 2000. Potential yield predictive models for the Sri Lankan reservoir fishery. Fish. Manage. Ecol. 7: 425–436.

    Google Scholar 

  35. Oglesby, R. T., 1977. Relationship of fish yield to lake phytoplankton standing crop. production and morphoedaphic factors. J. Fish. Res. Bd Can. 34: 2271–2279.

    Google Scholar 

  36. Panabokke, C. R., 1996. Soils and Agro-Ecological Environment of Sri Lanka. Natural Resources Series 2. Natural Resources, Energy and Science Authority. Sri Lanka: 220 pp.

    Google Scholar 

  37. Rhode, W., 1958. Primärproduktion and Seentypen. Verh. int. Ver. Limnol. 13: 121–141.

    Google Scholar 

  38. Robarts, R. D., 1979. Underwater light penetration chlorophylla and primary production in a tropical African lake (Lake Mcllwaine, Rhodesia). Arch. Hydrobiol. 86: 423–444.

    Google Scholar 

  39. Schiemer, F., U. S. Amarasinghe, J. Frouzova, B. Sricharoendham & E. I. L. Silva, 2001. Ecosystem structure and dynamics–a management basis for Asian reservoirs and lakes. In De Silva, S. S. (ed), Reservoir and Culture-based Fisheries: Biology and Management. ACIAR Publication No 98, Canberra, Australia: 215–226.

  40. Schiemer, F. & A. Duncan, 1983. Parakrama Samudra Project: a summary of main results in Limnology of Parakrama Samudra. In Schiemer, F. (ed.), Limnology of Parakrama Samudra – Sri Lanka a case study of an ancient man-made lake in the tropics. Dev. Hydrobiol. 12: 201–206.

  41. Silva, E. I. L. & R. W. Davies, 1986. Primary productivity and related parameters in three different types of inland waters in Sri Lanka. Hydrobiologia 137: 239–249.

    Google Scholar 

  42. Silva, E. I. L. & R. W. Davies, 1987. The seasonality of monsoonal primary productivity in Sri Lanka. Hydrobiologia 150: 165–175.

    Google Scholar 

  43. Silva, E. I. L. & G. A. R. K. Gamlath, 2000. Catchment Characteristics and Water Quality of three FISHSTRAT Reservoirs in Sri Lanka (Victoria, Minneriya and Udawalawe). Sri Lanka J. Aquat. Sci. 5: 55–73.

    Google Scholar 

  44. Silva, E. I. L. & F. Schiemer, 2001. Human factor: Fourth dimension of reservoir limnology in the tropics. In De Silva, S. S. (ed.), Reservoir and Culture-based Fisheries: Biology and Management. ACIAR Publication No 98, Canberra, Australia: 111–125.

  45. Talling, J. F., 1965. The photosynthetic activity of phytoplankton in East African lakes. Int. Revue. ges. Hydrobiol. 50: 1–32.

    Google Scholar 

  46. Talling, J. C. & J. Lemoalle, 1998. Ecological Dynamics of Tropical Inland Waters. Cambridge University Press: 441 pp.

  47. Thornton, K.W., B. L. Kimmel & F. E. Payne (eds) 1990. Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, New York: 246 p.

    Google Scholar 

  48. Vincent, W. F., 1979. Mechanism of rapid photosynthetic adaptation in natural phytoplankton communities. J. Phycol. 15: 429–433.

    Google Scholar 

  49. Ward, A. K. & R. G. Wetzel, 1980. Photosynthetic response of blue-green algae population to variable light intensities. Arch. Hydrobiol. 90: 129–138.

    Google Scholar 

  50. Wissamar, R. C., J. E. Richie, R. F. Stallard & J. M. Edmond, 1981. Plankton Metabolism and carbon processes in the Amazon river, its tributaries and floodplain waters, Peru–Brazil, May–June 1977, Ecology 62: 1622–1633.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silva, E.I.L., Amarasinghe, U.S., De Silva, S.S. et al. Some aspects of photosynthetic characteristics in a set of perennial irrigation reservoirs located in five river basins in Sri Lanka. Hydrobiologia 485, 19–33 (2002). https://doi.org/10.1023/A:1021310119462

Download citation

  • tropical reservoirs
  • primary productivity
  • underwater light climate
  • Sri Lanka