Skip to main content
Log in

Immunopathological prognostic and predictive factors in prostate cancer

  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Prostate cancer is the leading male malignancy in the Western world. Patients with prostate cancer have an unpredictable clinical course, as three biologically different types of tumor exist. This review summarises some of the recent progress made in understanding the biology of prostate cancer with special reference to the prognostic and predictive role of immunohistochemical markers. The prognostic value of established prognostic variables is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA 1997; 47: 5.

    Google Scholar 

  2. Frank RE. Prostate cancer. J Insur Med 2001; 33: 189.

    Google Scholar 

  3. Hamdy FC. Prognostic and predictive factors in prostate cancer. Cancer Tret Rev 2001; 27: 143.

    Google Scholar 

  4. Isola J, Auvinen A, Poutiainen M, Kakkola L et al. Predictors of biological aggressiveness of prostate specific antigen screening detected prostate cancer. J Urol 2001; 165: 1569.

    Google Scholar 

  5. Montie JE, Pienta KJ. Review of the role of androgenic hormone in the epidemiology of benign prostatic hyperplasia and prostate cancer. Urology 1994; 43: 892.

    Google Scholar 

  6. Brawley OW, Barnes S, Parnes H. The future of prostate cancer prevention. Ann N Y Acad Sci 2001; 952: 145.

    Google Scholar 

  7. Merrill RM, Morris MK. Prevalence-corrected prostate cancer incidence rates and trends. Am J Epidemiol 2002; 155: 148.

    Google Scholar 

  8. Morra MN, Das S. Prostate cancer: epidemiology and etiology. In: Das S, Crawford ED, eds. Cancer of the Prostate. New York: Marcel Dekker, 1993: 1.

    Google Scholar 

  9. Cook LS, Goldoft M, Schwartz SM, Weiss NS. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendents. J Urol 1999; 161: 152.

    Google Scholar 

  10. Hayes RB, Ziegler RG, Gridley G et al. Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol Biomarkers Prev 1999; 8: 25.

    Google Scholar 

  11. Nelson WG, De Marzo AM, Deweese TL et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann N Y Acad Sci 2001; 952: 135.

    Google Scholar 

  12. Isaacs WB, Bova GS, Morton RA et al. Molecular genetics and chromosomal alterations in prostate cancer. Cancer 1995; 75: 2004.

    Google Scholar 

  13. Smith JR, Carpten J, Kallioniemi O et al. Major susceptibility locus for prostate cancer on chromosome 1 revealed by a genome-wide search. Science 1996; 274: 1371.

    Google Scholar 

  14. Sakr WA, Haas GP, Cassin BJ et al. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 1993; 150: 379.

    Google Scholar 

  15. Montironi R, Mazzucchelli R, Marshall JR, Bartels PH. Prostate cancer prevention: review of target populations, pathological biomarkers, and chemopreventive agents. J Clin Pathol 1999; 52: 793.

    Google Scholar 

  16. Giatromanolaki A, Sivridis E, Syrigos K. Biology of prostate cancer. In: Syrigos K, ed. Prostate Cancer. Biology, Diagnosis and Management. Oxford: Oxford University Press 2001; 135.

    Google Scholar 

  17. Strohmeyer D, Rossing C, Bauerfeind A et al. Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. Prostate 2000; 45: 216.

    Google Scholar 

  18. Sivridis E, Giatromanolaki A, Papadopoulos I et al. Thymidine phosphorylase expression in normal, hyperplastic and neoplastic prostates: correlation with tumour associated macrophages, infiltrating lymphocytes, and angiogenesis. Br J Cancer 2002: in press.

  19. Montironi R, Mazzucchelli R, Marshall JR, Bartels PH. Prostate cancer prevention: review of target populations, pathological biomarkers, and chemopreventive agents. J Clin Pathol 1999; 52: 793.

    Google Scholar 

  20. Weidner N, Caroll P, Flax J et al. Tumor angiogenesis correlates with metastasis in invasive prostate cancer. Am J Pathol 1993; 143: 401.

    Google Scholar 

  21. Bostwick DG. Pathology of prostate cancer. In: Ernstoff MS, Heaney JA, Peschel RE, eds. Prostate Cancer. London: Blackwell Science, 1998: 15.

    Google Scholar 

  22. von Eschenbach EC. The biologic dilemma of early carcinoma of the prostate. Cancer 1996; 78: 326.

    Google Scholar 

  23. Johansson JE, Adami HO, Andersson SO, et al. High 10 year survival rate in patients with early, untreated prostatic cancer. JAMA 1992; 267: 2191.

    Google Scholar 

  24. Chodak GW, Thisted RA, Gerber GS et al. Recent results of conservative management of clinically localized prostate cancer. N Engl J Med 1994; 330: 242.

    Google Scholar 

  25. Prostate Cancer Trialists' Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of 22 randomised trials with 3283 deaths in 5710 patients. Lancet 1995; 346: 265.

    Google Scholar 

  26. Mikuz G. Pathology of prostate cancer. Old problems and new facts. Adv Clin Path 1997; 1: 21.

    Google Scholar 

  27. McNeal JE, Redwine EA, Freiha FS, Staney TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 1988; 12: 897.

    Google Scholar 

  28. Helpap B. Observations on the number, size, and localization of nucleoli in hyperplastic and neoplastic prostatic disease, Histopathology 1998; 13: 203.

    Google Scholar 

  29. Genega EM, Hutchinson B, Reuter VE, Gaudin PB. Immunophenotype of high-grade prostatic adenocarcinoma and urothelial carcinoma. Mod Pathol 2000; 13: 1186.

    Google Scholar 

  30. Bostwick DG, Brawer MK. Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 1987; 59: 788.

    Google Scholar 

  31. Bostwick DG. High grade prostatic intraepithelial neoplasia: the most likely precursor of prostate cancer. Cancer 1995; 75: 1823.

    Google Scholar 

  32. McNeal JE, Bostwick DG. Intraductal dysplasia: a premalignant lesion of the prostate. Hum Pathol 1986; 17: 64.

    Google Scholar 

  33. Epstein JI, Grignan DJ, Humphrey PA et al. Interobserver reproducibility in the diagnosis of prostatic intraepithelial neoplasia. Am J Surg Pathol 1995; 19: 873.

    Google Scholar 

  34. Brawer MK, Peehl DM, Stamey TA, Bostwick DG. Keratin immunoreactivity in benign and neoplastic human prostate. Cancer Res 1985; 45: 3663.

    Google Scholar 

  35. Keetch DW, Humphrey P, Stahl D et al. Morphometric analysis and clinical follow up of isolated prostatic intraepithelial neoplasia in needle biopsy of the prostate. J Urol 1995; 154: 347.

    Google Scholar 

  36. Bostwick DG, Qian J, Frankel K. The incidence of high grade prostatic intraepithelial neoplasia in needle biopsies. J Urol 1995; 154: 1791.

    Google Scholar 

  37. Epstein JI, Cho KR, Quinn BD. Relationship of severe dysplasia to stage A (incidental) adenocarcinoma of prostate. Cancer 1990; 65: 2321.

    Google Scholar 

  38. Haggman MJ, Macoska JA, Wojno KJ, Oesterling JE. The relationship between prostatic intraepithelial neoplasia and prostate cancer: critical issues. J Urol 1997; 158: 12.

    Google Scholar 

  39. Bostwick DG, Srigley J, Grignon D et al. Atypical adenomatous hyperplasia of the prostate: morphologic criteria for its distinction from well-differentiated carcinoma. Hum Pathol 1993; 24: 819.

    Google Scholar 

  40. Bostwick DG, Qian J. Atypical adenomatous hyperplasia of the prostate: relationship with carcinoma in 217 whole mount radical prostatectomies. Am J Surg Pathol 1995; 19: 506.

    Google Scholar 

  41. Bostwick DG. Pathology of prostate cancer. In: Ernstoff MS, Heaney JA, Peschel RE, eds. Prostate Cancer. London: Blackwell Science, 1998: 15.

    Google Scholar 

  42. Kovi J. Microscopic differential diagnosis of small acinar adenocarcinoma of prostate. Pathol Annu 1985; 20: 157.

    Google Scholar 

  43. Montironi R, Lopez-Beltran A, Mazzucchelli R, Scarpelli M, Bollito E. Assessment of radical prostatectomy specimens and diagnostic reporting of pathological findings. Pathologica 2001; 93: 226.

    Google Scholar 

  44. Bostwick DG, Grignon DJ, Hammond ME et al. Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 2000; 124: 995.

    Google Scholar 

  45. Lau WK, Blute ML, Bostwick DG et al. Prognostic factors for survival of patients with pathological Gleason score 7 prostate cancer: differences in outcome between primary Gleason grades 3 and 4. J Urol 2001; 166: 1692.

    Google Scholar 

  46. Bostwick DG. Grading prostate cancer. Am J Clin Pathol 1994 4(Suppl 1); 102: S38.

    Google Scholar 

  47. Bostwick DG. Gleason grading of prostate needle biopsies. Correlation with grade in 316 matched prostatectomies. Am J Surg Pathol 1994; 18: 796.

    Google Scholar 

  48. Mills SE, Fowler JE Jr. Gleason histologic grading of prostatic carcinoma. Correlations between biopsy and prostatectomy. Cancer 1986; 57: 346.

    Google Scholar 

  49. Hoedemaeker RF, Vis AN, Van Der Kwast TH. Staging prostate cancer. Microse Res Terch 2000; 51: 423.

    Google Scholar 

  50. Batata MA, Hilaris BS, Whitmore WF. Factors affecting tumor control. In: Hilaris BS, Batata MA, eds. Brachytherapy Oncology – 1983: Advances in Prostate and Other Cancer. New York: Memorial Sloan-Kettering Cancer Center, 1983; 65.

    Google Scholar 

  51. Brawn PN, Ayala AG, von Eschenbach AC, Hussay DH, Johnson DE. Histologic grading study of prostate adenocarinoma: the development of a new system and comparison with other methods – a preliminary study. Cancer 1982; 49: 525.

    Google Scholar 

  52. Epstein JI, Pizov G, Walsh PC. Correlation of pathologic findings with progression after radical retropubic prostatectomy. Cancer 1993; 71: 3582.

    Google Scholar 

  53. Ozcan F. Correlation of perineural invasion on radical prostatectomy specimens with other pathologic prognostic factors and PSA failure. Eur Urol 2001; 40: 308.

    Google Scholar 

  54. Stamey TA, Freiha FS, McNeal JE et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 1993; 71: 933.

    Google Scholar 

  55. McNeal JE. Cancer volume and site of adenocarcinoma in the prostate: relationship to local and distant spread. Hum Pathol 1992; 23: 258.

    Google Scholar 

  56. Terris MK, McNeal JE, Stamey TA. Estimation of prostate cancer volume by transrectal ultrasound imaging. J Urol 1992; 147: 855.

    Google Scholar 

  57. Epstein JI, Carmichael M, Partin AW, Walsh PC. Is tumor volume an independent predictor of progression following radical prostatectomy? A multivariate analysis of 185 clinical stage B adenocarcinomas of the prostate with 5 years of followup. J Urol 1993; 149: 1478.

    Google Scholar 

  58. Rubin MA, Bassily N, Sanda M et al. Relationship and significance of greatest percentage of tumor and perineural invasion on needle biopsy in prostatic adenocarcinoma. Am J Surg Pathol 2000; 24: 183.

    Google Scholar 

  59. Maru N, Ohori M, Kattan MW, Scardino PT, Wheeler TM. Prognostic significance of the diameter of perineural invasion in radical prostatectomy specimens. Hum Pathol 2001; 32: 828.

    Google Scholar 

  60. Bonkhoff H, Stein U, Welter C, Remberger K. Differential expression of the pS2 protein in the human prostae cancer: association with premalignant changes and neuroendocrine differentiation. Hum Pathol 1995; 26: 824.

    Google Scholar 

  61. McWilliam LJ, Manson C, George NJ. Neuroendocrine differentiation and prognosis in prostatic adenocarcinoma. Br J Urol 1997; 80: 287.

    Google Scholar 

  62. Abrahamsson PA, Cockett AT, di Sant'Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate Suppl 1998; 8: 37.

    Google Scholar 

  63. Abrahansson PA, Falkmer S, Falt K, Grimelius L. The course of neuroendocrine differentiation in prostatic carcinomas. An immunohistochemical study testing chromogranin A as an “endocrine marker”. Pathol Res Pract 1989; 185: 373.

    Google Scholar 

  64. Wright C, Grignon D, Shum D et al. Neuroendocrine differentiation in prostatic adenocarcinoma is not an independent prognostic indicator. Mod Pathol 1992; 5: 60A.

    Google Scholar 

  65. Cohen MK, Arber DA, Coffield KS et al. Neuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumor progression. Cancer 1994; 74: 1899.

    Google Scholar 

  66. Yarbro JW, Page DL, Fielding LP, Partridge EE, Murphy GP. American Joint Committee on Cancer prognostic factors consensus conference. Cancer 1999; 86: 2436.

    Google Scholar 

  67. Weckermann D, Muller P, Wawroschek F et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J Urol 2001; 166: 699.

    Google Scholar 

  68. Feneley MR, Young MPA, Chinyama C, Kirby RS, Parkinson MC. Ki-67 expression in early prostate cancer and associated pathological lesions. J Clin Pathol 1996; 49: 741.

    Google Scholar 

  69. Rhodes T, Girman CJ, Jacobsen SJ et al. Longitudinal prostate growth rates during 5 years in randomly selected community men 40 to 79 years old. J Urol 1999; 161: 1174.

    Google Scholar 

  70. Steiner MS. Role of peptide growth in the prostate: a review. Urology 1993; 42: 99.

    Google Scholar 

  71. Price DT, Rocca GD, Guo C et al. Activation of extracellular-regulated kinase in human prostate cancer. J Urol 1999; 162: 1537.

    Google Scholar 

  72. Grignon DJ, Caplan R, Sarkar FH et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. Natl Cancer Inst 1997; 89: 158.

    Google Scholar 

  73. Stackhoues GB, Sesterhenn IA, Bauer JJ et al. p53 and bcl-2 immunohistochemistry in pretreatment prostate needle biopsies to predict recurrence of prostate cancer after radical prostatectomy. J Urol 1999; 162: 2040.

    Google Scholar 

  74. Matsushima H, Kitamura T, Goto T et al. Combined analysis with bcl-2 and p53 immunostaining predicts poorer prognosis in prostatic carcinoma. J Urol 1997; 158: 2278.

    Google Scholar 

  75. Rakozy C, Grignon DJ, Li Y et al. p53 gene alterations in prostate cancer after radiation failure and their association with clinical outcome: a molecular and immunohistochemical anlaysis. Pathol Res Pract 1999; 195: 129.

    Google Scholar 

  76. Quinn DI, Henshall SM, Head DR et al. Prognostic significance of p53 nuclear accumulation in localized prostate cancer treated with radical prostatectomy. Cancer Res 2000; 60: 1585.

    Google Scholar 

  77. Borre M, Stausbol-Gron B, Overgaard J. p53 accumulation associated with bcl-2, the proliferation marker MIB-1 and survival in patients with prostate cancer subjected to watchful waiting. J Urol 2000; 164: 716.

    Google Scholar 

  78. Raffo AJ, Perlman H, Chen MW et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 1995; 55: 4438.

    Google Scholar 

  79. McDormell TJ, Troncoso P, Brisbay SM et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940.

    Google Scholar 

  80. Colombel M, Symmans F, Gil S et al. Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone refractory human prostate cancers. Am J Pathol 1993; 143: 390.

    Google Scholar 

  81. Johnson MI, Robinson MC, Marsh C et al. Expression of Bcl-2, Bax, and p53 in high-grade prostatic intraepithelial neoplasia and localize prostate cancer: relationship with apoptosis and proliferation. Prostate 1998; 37: 223.

    Google Scholar 

  82. Moul JW. Angiogenesis, p53, bcl-2 and ki-67 in progression of prostate cancer after radical prostatectomy. Eur Urol 1999; 35: 399.

    Google Scholar 

  83. Scherr DS, Vaughan ED Jr, Wei J et al. Bcl-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 1999; 162: 12.

    Google Scholar 

  84. Haggstrom S, Lissbrant IF, Bergh A, Damber J-E. Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. J Urol 1999; 161: 1620.

    Google Scholar 

  85. Franck Lissbrant I, Haggstrom S, Damber J-E, Bergh A. Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats. Endocrinology 1998; 139: 451.

    Google Scholar 

  86. Sweat SD, Pacelli A, Bergstralh EJ et al. Androgen receptor expression in prostate cancer lymph node metastases is predictive of outcome after surgery. J Urol 1999; 161: 1233.

    Google Scholar 

  87. Myers RB, Kudlow JE, Grizzle WE. Expression of trans-forming growth factor-alpha, epidermal growth factor and the epidermal growth factor receptor in adenocarcionma of the prostate and benign prostatic hyperplasia. Mod Pathol 1993; 6: 733.

    Google Scholar 

  88. Harper ME, Goddard L, Glynne-Jones E et al. An immunocytochemical analysis of TGF-alpha expression in benign and malignant prostatic tumors. Prostate 1993; 23: 9.

    Google Scholar 

  89. Hofer DR, Sherwood ER, Bromber WD et al. Autonomous growth of androgen-independent human prostatic carcinoma cells: role of transforming growth factor. Cancer Res 1991; 51: 2780.

    Google Scholar 

  90. Thompson TC, Truong LD, Timme TL et al. Transforming growth factor Beat-1 as a biomarker for prostate cancer. J Cell Biochem 1992 (suppl 16H): 54.

    Google Scholar 

  91. Netto GJ, Humphrey PA. Molecular biologic aspects of human prostatic carcinoma. Am J Clin Pathol 1994; 102(Suppl 1): S57.

    Google Scholar 

  92. Ochiai A, Akimoto S, Kanai Y et al. c-erbB-2 gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun 1994: 205: 73.

    Google Scholar 

  93. Yu D, Wang SS, Dulski KM et al. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 1994; 54: 3260.

    Google Scholar 

  94. Kuhn EJ, Kurnot RA, Sesterhenn IA et al. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J Urol 1993; 150: 1427.

    Google Scholar 

  95. Ware J, Maygarden SJ, Kooniz WW et al. Immunohistochemical detection of c-erb-B2 protein in human benign and neoplastic prostse. Hum Pathol 1991; 22: 254.

    Google Scholar 

  96. Fox SB, Persad SA, Coleman N et al. Prognostic value of c-erb-B2 and epidermal growth factor receptor in stage A1 (T1a) prostatic adenocarcinoma. Br J Urol 1994; 74: 214.

    Google Scholar 

  97. Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/over-expression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res 2000; 103: 57.

    Google Scholar 

  98. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001; 28: 13.

    Google Scholar 

  99. Bettencourt MC, Bauer JJ, Sesterhenn IA et al. CD34 immunohistochemical assessment of angiogenesis as a prognostic marker for prostate cancer recurrence after radical prostatectomy. J Urol 1998; 160: 459.

    Google Scholar 

  100. Boore M, Offersen BV, Overgaard J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer 1998; 78: 940.

    Google Scholar 

  101. Mydlo JH, Kral JG, Volpe Met al. An analysis of microvessel density, androgen receptor, p53 and HER-2/neu expression and Gleason score in prostate cancer: preliminary results and therapeutic implications. Eur Urol 1998; 34: 426.

    Google Scholar 

  102. Joseph IB, Nelson JB, Denmeade SR, Isaacs JT. Androgens regulae vascular endothelial growth factor content in normal and malignant prostate tissue. Clin Cancer Res 1997; 3: 2507.

    Google Scholar 

  103. Ferrer FA, Miller LJ, Andrawis RI et al. Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 1998; 51: 161.

    Google Scholar 

  104. Duque JL, Loughlin KR, Adam RM et al. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 1999; 54: 523.

    Google Scholar 

  105. Gao AC, Lou W, Dong JT, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 1997; 57: 846.

    Google Scholar 

  106. Kallakury BV, Yang F, Figge J et al. Decreased levels of CD44 protein and mRNA in prostate carcinoma: correlation with tumour grade and ploidy. Cancer 1996; 78: 1461.

    Google Scholar 

  107. Nagabhushan M, Pretlow TG, Guo Y-J et al. Altered expression of CD44 in human prostate cancer during progression. Am J Clin Pathol 1996; 106: 647.

    Google Scholar 

  108. Noordzij MA, van Steenbrugge G-J, Verkaik NS et al. The prognostic value of CD44 isoforms in prostate cancer patients treated by radical prostatectomy. Clin Cancer Res 1997; 3: 805.

    Google Scholar 

  109. Umbas R, Isaacs WB, Bringuier PP et al. Decreased E-cadherin expression is correlated with poor prognosis in patients with prostate cancer. Cancer Res 1994; 54: 3229.

    Google Scholar 

  110. Hsieh JT, Luo W, Song W et al. Tumor-suppressive role of an androgen-regulated epithelial cell-adhesion molecule (C-CAM) in prostate carcinoma with revealed by sense and antisense approaches. Cancer Res 1995; 55: 190.

    Google Scholar 

  111. Pu Y-S, Luo W, Lu H-H et al. Differential expression of C-CAM cell adhesion molecule in prostate carcinogenesis in a transgenic mouse model. J Urol 1999; 162: 892.

    Google Scholar 

  112. Litvinov SV, Velders MP, Bakker CM et al. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 1994; 125: 437.

    Google Scholar 

  113. Poczatek RB, Myers RB, Manne U et al. Ep-CAM levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. J Urol 1999; 162: 1462.

    Google Scholar 

  114. Wesseling J, van der Walk SW, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell 1996; 7: 565.

    Google Scholar 

  115. Li Y, Bharti A, Chen D, Gong J, Kufe D. Interaction of glycogen synthase kinase 3beta with DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol 1998; 18: 7216.

    Google Scholar 

  116. Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res 1998; 58: 2014.

    Google Scholar 

  117. Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 1995; 129: 255.

    Google Scholar 

  118. Papadopoulos I, Sivridis E, Giatromanolaki A, Koukourakis ML. Tumor angiogenesis is associated with MUC1 over-expression and loss of prostate-specific antigen expression in prostate cancer. Clin Cancer Res 2001; 7: 1533.

    Google Scholar 

  119. Jensen SL, Wood DP, Jr, Banks ER et al. Increased levels of nm23 H1/nucleoside diphosphate kinase A mRNA associated with adenocarcinoma of the prostate. World J Urol 1996, 14 Suppl 1; S21.

    Google Scholar 

  120. Igawa M, Urakami S, Shiina H et al. Association of nm23 protein levels in human prostates with proliferating cell nuclear antigen expression at autopsy. Eur Urol 1996; 30: 383.

    Google Scholar 

  121. Kuczyk MA, Bokemeyer C, Hartmann J et al. Predictive value of altered p27Kip1 and p21WAF/Cip1 protein expression for the clinical prognosis of patients with localized prostate cancer. Oncol Rep 2001; 8: 1401.

    Google Scholar 

  122. Croix B, Florenes VA, Rak JW et al. Impact of the cyclin-dependent kinase inhibitor p27kip1 on resistance of tumor cells to anticancer agents. Nature Med 1996; 2: 1204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sivridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivridis, E., Touloupidis, S. & Giatromanolaki, A. Immunopathological prognostic and predictive factors in prostate cancer. Int Urol Nephrol 34, 63–71 (2002). https://doi.org/10.1023/A:1021306928664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021306928664

Navigation