Water, Air, and Soil Pollution

, Volume 141, Issue 1–4, pp 1–33 | Cite as

Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems

  • Y. S. Ho
  • J. F. Porter
  • G. McKayEmail author


The sorption of three divalent metal ions — copper, nickel and lead — from aqueous solution onto peat in single component systems has been studied and the equilibrium isotherms determined. The experimental data have been analysed using the Langmuir, Freundlich, Redlich-Peterson, Toth, Temkin, Dubinin-Radushkevich and Sips isotherm models. In order to determine the best fit isotherm for each system, six error analysis methods were used to evaluate the data: the coefficient of determination, the sum of the errors squared, a hybrid error function, Marquardt's percent standard deviation, the average relative error and the sum of absolute errors. The error values demonstrated that the Sips equation provided the best model for the three sets of experimental data overall.

copper isotherm lead nickel peat sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni, C. and Sparks, D. L.: 1991, ‘Kinetics of Soil Chemical Reactions - A Theoretical Treatment’, in D. L. Sparks and D. L. Suarez (eds), Rates of Soil Chemical Processes, Soil Science Society of America, Madison, WI, pp. 1–18.Google Scholar
  2. Aharoni, C. and Ungarish, M.: 1977, ‘Kinetics of activated chemisorption. Part 2. Theoretical models’, J. Chem. Soc. Far. Trans. 73, 456–464.CrossRefGoogle Scholar
  3. Allen, S. J.: 1987, ‘Equilibrium adsorption isotherms for peat’, Fuel 66, 1171–1176.CrossRefGoogle Scholar
  4. Aly, H. M. and Daifullah, A. A. M.: 1998, ‘Potential use of bagasse pith for the treatment of wastewater containing metals’, Ads. Sci. Technol. 16, 33–38.Google Scholar
  5. Baes, A. U., Umali, S. J. P. and Mercado, R. L.: 1996, ‘Ion exchange and adsorption of some heavy metals in a modified coconut coir cation exchanger’, Water Sci Technol. 34, 193–200.CrossRefGoogle Scholar
  6. Bolto, B. A. and Pawlowski, L.: 1987, Wastewater Treatment by Ion Exchange, Chapman and Hall, N.Y.Google Scholar
  7. Bunzl, K., Schmidt, W. and Sansoni, B.: 1976, ‘Kinetics of ion exchange in soil organic matter - IV. Adsorption and desorption of Pb2+, Cu2+, Zn2+ and Ca2+’, J. Soil. Sci. 27, 32–41.CrossRefGoogle Scholar
  8. Dubinin, M. M.: 1960, ‘The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface’, Chem. Rev. 60, 235–266.CrossRefGoogle Scholar
  9. Dubinin, M. M.: 1965, ‘Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents’, Zhurnal Fizicheskoi Khimii 39, 1305–1317.Google Scholar
  10. Edgar, T. F. and Himmelblau, D. M.: 1989, Optimization of Chemical Processes, McGraw-Hill, N.Y., pp. 208–241.Google Scholar
  11. Findon, A., McKay, G. and Blair, H. S.: 1993, ‘Sorption of copper on chitosan’, J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control 28, 173.Google Scholar
  12. Freedman, R., Olson, L. and Hoffer, B. J.: 1990, ‘Toxic effects of lead on neuronal development and function’, Envir. Health Persp. 89, 27–33.Google Scholar
  13. Freundlich, H. M. F.: 1906, ‘Over the adsorption in solution’, J. Phys. Chem. 57, 385–470.Google Scholar
  14. Gao, S., Walker, W. J., Dahlgren, R. A. and Bold, J.: 1997, ‘Simultaneous sorption of Cd, Cu, Ni, Zn, Pb and Cr on soils treated with sewage sludge supernatent’, Water, Air, and Soil Pollut. 93, 331–345.CrossRefGoogle Scholar
  15. Goldstein, G. W.: 1990, ‘Lead poisoning and brain cell function’, Environ. Health Persp. 89, 91–94.Google Scholar
  16. Gosset, T., Trancart, J. L. and Thevenot, D. R.: 1986, ‘Batch metal removal by peat: Kinetics and thermodynamics’, Wat. Res. 20, 21–26.CrossRefGoogle Scholar
  17. Hanna, O. T. and Sandall, O. C.: 1995, Computational Methods in Chemical Engineering, Prentice-Hall International, N.J., pp. 127–130.Google Scholar
  18. Hasany, S. M. and Chaudhary, M. H.: 1996, ‘Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution’, Appl. Rad. Isot. 47, 467–471.CrossRefGoogle Scholar
  19. Ho, Y. S.: 1995, ‘Adsorption of Heavy Metals from Waste Streams by Peat’, Ph.D. Thesis, University of Birmingham, U.K.Google Scholar
  20. Ho, Y. S., Wase, D. A. J. and Forster, C. F.: 1994, ‘The adsorption of divalent copper ions from aqueous solution by sphagnum moss peat’, Trans. IChem. Eng. Part B: Proc. Safety Env. Prot. 17, 185–194.Google Scholar
  21. Ho, Y. S., Waste, D. A. J. and Forster, C. F.: 1995, ‘Batch nickel removal from aqueous solution by sphagnum moss peat’, Wat. Res. 29, 1327–1332.CrossRefGoogle Scholar
  22. Jossens, L., Prausnitz, J. M., Fritz, W., Schlünder, E. U. and Myers, A. L.: 1978, ‘Thermodynamics of multi-solute adsorption from dilute aqueous solutions’, Chem. Eng. Sci. 33, 1097–1106.CrossRefGoogle Scholar
  23. Kapoor, A. and Yang, R. T.: 1989, ‘Correlation of equilibrium adsortpion data of condensible vapours on porous adsorbents’, Gas Sep. Purif. 3, 187–192.CrossRefGoogle Scholar
  24. Khan, A. R., Al-Wahebam, I. R. and Al-Haddad, A.: 1996, ‘A generalised equation for adsorption isotherms for multicomponent organic pollutants in dilute aqueous solution’, Envir. Technol. 17, 13–23.CrossRefGoogle Scholar
  25. Khan, A. R., Al-Bahri, T. A. and Al-Haddad, A.: 1997, ‘Adsorption of phenol based organic pollut-ants on activated carbon from multi-component dilute aqueous solutions’, Water Research 31, 2102–2112.CrossRefGoogle Scholar
  26. Kumar, P. and Dara, S. S.: 1981, ‘Studies on binding of copper by some natural polymeric materials’, J. Polym. Sci. Polym. Chem. Ed. 19, 397.CrossRefGoogle Scholar
  27. Langmuir, I.: 1916, ‘The adsorption of gases on plane surface of glass, mica and platinum’, J. Am. Chem. Soc. 40, 1361–1368.CrossRefGoogle Scholar
  28. Low, K. S., Lee, C. K. and Tai, C. H.: 1994, J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control 29, 171.Google Scholar
  29. Luckey, T. D. and Venugopal, B.: 1977, Metal Toxicity in Mammals, Physiologic and Chemical Basis for Metal Toxicity, Vol. 1, Plenum Press, New York and London.Google Scholar
  30. Macias-Garcia, A., Valenzuela-Calahorro, C. and Gomez-Serrano, V.: 1993, Carbon 31, 1249.CrossRefGoogle Scholar
  31. Malek, A. and Farooq, S.: 1996, ‘Comparison of isotherm models for hydrocarbon adsorption on activated carbon’, A. I. Ch. E. J. 42, 431–441.Google Scholar
  32. Marquardt, D. W.: 1963, ‘An algorithm for least-squares estimation of nonlinear parameters’, J. Soc. (Ind.) Appl. Math. 11, 431–441.CrossRefGoogle Scholar
  33. McKay, G.: 1995, Use of Adsorbents for the Removal of Pollutants from Wastewaters, CRC Press, Boca Raton, New York, London and Tokyo.Google Scholar
  34. McKay, G., Allen, S. J. and McConvey, I. F.: 1984, ‘The adsorption of dyes from solution - Equilibrium and column studies’, Water, Air, and Soil Pollut. 21, 127–129.CrossRefGoogle Scholar
  35. McKay, G., Ho, Y. S. and Ng, J. C. Y.: 1999, ‘Biosorption of copper from wastewaters: A review’, Sepn. Purifn. Methods, (in press).Google Scholar
  36. McKay, G., Vong, B. and Porter, J. F.: 1998, ‘Isotherm studies for the sorption of metal ions onto peat’, Ads. Sci. Technol. 16, 51–66.Google Scholar
  37. Meyer, U. and Lieser, K. H.: 1995, Vom Wasser 85, 95.Google Scholar
  38. Microsoft Corporation: 1995, User's Guide: Microsoft Excel Ver. 5.0, pp. 561–587.Google Scholar
  39. Myers, R. H.: 1990, Classical and Modern Regression with Applications, PWS-KENT, pp. 297–298, 444-445.Google Scholar
  40. Okieimen, F. E., Okundia, E. U. and Ogbeifun, D. E.: 1991, ‘Sorption of cadmium and lead ions on modified groundnut (Arachis hyupogea) husks’, J. Chem. Technol. Biotechnol. 51, 97–103.CrossRefGoogle Scholar
  41. Radke, C. J. and Prausnitz, J. M.: 1972, ‘Thermodynamics of multisolute adsorption from dilute liquid solutions’, AIChEJ 18, 761–768.CrossRefGoogle Scholar
  42. Radushkevich, L. V.: 1949, ‘Potential theory of sorption and structure of carbons’, Zhurnal Fizicheskoi Khimii 23, 1410–1420.Google Scholar
  43. Randall, J. M., Reuter, E. W. and Waiss, A. C.: 1975, ‘Removal of cupric ion from solution by contact with peanut skins’, J. Appl. Polym. Sci. 19, 1563.CrossRefGoogle Scholar
  44. Ratkowski, D. A.: 1990, Handbook of Nonlinear Regression Models, Marcel Dekker, N. Y.Google Scholar
  45. Redlich, O. and Peterson, D. L.: 1959, ‘A useful adsorption isotherm’, J. Phys. Chem. 63, 1024.Google Scholar
  46. Richter, E., Schutz, W. and Myers, A. L.: 1989, Effect of adsorption equation on prediction of multicomponent adsorption equilibria by the ideal adsorbed solution theory’, Chem.Eng.Sci. 44, 1609–1616.CrossRefGoogle Scholar
  47. Roa, C. R. N., Iyengar, L. and Venkobachar, C.: 1993, J. Env. Eng. Div., Proc. Amer. Soc. Civ. Eng. 119, 369.Google Scholar
  48. Sasaki, Y., Tagashira, S., Murakami, Y., Fujiwara, I. and Hayashi, K.: 1995, Radioisotopes 44, 1.Google Scholar
  49. Seidel, A. and Gelbin, D.: 1988, ‘On applying the ideal adsorbed solution theory to multicomponent adsorption equilibria of dissolved organic components on activated carbon’, Chem. Eng. Sci. 43, pp. 79–89.CrossRefGoogle Scholar
  50. Seidel-Morgenstern, A. and Guichon, G.: 1993, ‘Modelling of the competitive isotherms and the chromatographic separation of two enantiomers’, Chem.Eng. Sci. 48, 2787–2797.CrossRefGoogle Scholar
  51. Shukla, S. R. and Sakhardande, V. D.: 1991, J. Appl. Polym. Sci. 42, 829.CrossRefGoogle Scholar
  52. Sips, R.: 1948, ‘Combined form of Langmuir and Freundlich equations’, J. Chem. Phys. 16, 490–495.CrossRefGoogle Scholar
  53. Spark, K. M., Wells, J. D. and Johnson, B. B.: 1995, European J. Soil Sci. 46, 633.CrossRefGoogle Scholar
  54. Tan, W. T. and Abd. Rahman, M. K.: 1988, ‘Removal of lead, cadmium and zinc by waste tea leaves’, Env. Technol. Lett. 9, 1223–1232.CrossRefGoogle Scholar
  55. Tchobanoglous, G. and Burton, F. L.: 1991, Wastewater Engineering (Treatment, Disposal and Reuse), 3rd ed., New York, Metcalf and Eddy, McGraw-Hill, Vol. 11, pp. 740–741.Google Scholar
  56. Toth, J.: 1962, Acta Chim. Acad. Sci. Hung. 15, 415–430.Google Scholar
  57. Volesky, B. and Holan, Z. R.: 1995, ‘Review: biosorption of heavy metals’, Biotechnol. Progr. 11, 235–250.CrossRefGoogle Scholar
  58. Volesky, B. and May-Phillips, H. A.: 1995, ‘Biosorption of heavy metals by saccharomyces cerevisiae’, Appl. Microbiol. Biotechnol. 42, 797.CrossRefGoogle Scholar
  59. Yadava, K. P., Tyagi, B. S. and Singh, V. N.: 1991, ‘Effect of temperature on the removal of lead (II) by adsorption on china clay and wollastonite’, J. Chem. Technol. Biotechnol. 51, 447–460.Google Scholar
  60. Zeldowitsch, J.: 1934, ‘Adsorption site energy distribution’, Acta Physicochim, URSS 1, 961–973.Google Scholar
  61. Zhipei, Z., Junlu, Y., Zengnui, W. and Piya, C.: 1984, ‘A preliminary study of the removal of Pb2+, Cd2+, Zn2+, Ni2+ and Cr6+ from wastewaters with several Chinese peats’, Proc. Seventh Int. Peat Congr. 3, 147–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong, SAR China

Personalised recommendations