Skip to main content
Log in

Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow

  • Published:
Computational Geosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a locally mass conservative scheme for the approximation of two-phase flow in a porous medium that allows us to obtain detailed fine scale solutions on relatively coarse meshes. The permeability is assumed to be resolvable on a fine numerical grid, but limits on computational power require that computations be performed on a coarse grid. We define a two-scale mixed finite element space and resulting method, and describe in detail the solution algorithm. It involves a coarse scale operator coupled to a subgrid scale operator localized in space to each coarse grid element. An influence function (numerical Greens function) technique allows us to solve these subgrid scale problems independently of the coarse grid approximation. The coarse grid problem is modified to take into account the subgrid scale solution and solved as a large linear system of equations posed over a coarse grid. Finally, the coarse scale solution is corrected on the subgrid scale, providing a fine grid representation of the solution. Numerical examples are presented, which show that near-well behavior and even extremely heterogeneous permeability barriers and streaks are upscaled well by the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Amaziane, A. Bourgeat and J. Koebbe, Numerical simulation and homogenization of two-phase flow in heterogeneous porous media, Transport Porous Media 9 (1991) 519-547.

    Google Scholar 

  2. T. Arbogast, The existence of weak solutions to single-porosity and simple dual-porosity models of two-phase incompressible flow, J. Nonlinear Anal. 19 (1992) 1009-1031.

    Google Scholar 

  3. T. Arbogast, Numerical subgrid upscaling of two-phase flow in porous media, in: Numerical Treat-ment of Multiphase Flows in Porous Media, eds. Z. Chen et al., Lecture Notes in Physics, Vol. 552 (Springer, Berlin, 2000) pp. 35-49.

    Google Scholar 

  4. T. Arbogast and S. Bryant, Efficient forward modeling for DNAPL site evaluation and remediation, in: Computational Methods in Water Resources, Vol. XIII, eds. Bentley et al. (Rotterdam, 2000) pp. 161-166.

  5. T. Arbogast and S. Bryant, Numerical subgrid upscaling for waterflood simulations, SPE 66375, in: Proc. of the 16th SPE Symposium on Reservoir Simulation, Houston, TX, 11-14 February 2001.

  6. T. Arbogast, S.E. Minkoff and P.T. Keenan, An operator-based approach to upscaling the pressure equation, in: Computational Methods in Water Resources, Vol. XII(1), eds. V.N. Burganos et al. (Southampton, UK, 1998) pp. 405-412.

  7. T. Arbogast, M.F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33 (1996) 1669-1687.

    Google Scholar 

  8. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, post-processing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32.

    Google Scholar 

  9. F. Brezzi, Interacting with the subgrid world, in: Proc. of the Dundee Conference, 1999.

  10. F. Brezzi, J. Douglas, Jr., R. Duràn and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987) 237-250.

    Google Scholar 

  11. F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed elements for second order elliptic problems, Numer. Math. 47 (1985) 217-235.

    Google Scholar 

  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991).

    Google Scholar 

  13. G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation (Elsevier Science, New York, 1986).

    Google Scholar 

  14. Z. Chen, Large-scale averaging analysis of single phase flow in fractured reservoirs, SIAM J. Appl. Math. 54 (1994) 641-659.

    Google Scholar 

  15. R. Glowinski and M.F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in: First Internat. Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. R. Glowinski et al. (SIAM, Philadelphia, 1988) pp. 144-172.

    Google Scholar 

  16. U. Hornung, ed., Homogenization and Porous Media, Interdisciplinary Applied Mathematics Series (Springer, New York, 1997) to appear.

    Google Scholar 

  17. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite mate-rials and porous media, J. Comput. Phys. 134 (1997) 169-189.

    Google Scholar 

  18. T.J.R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401.

    Google Scholar 

  19. T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method-a para-digm for computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24.

    Google Scholar 

  20. L.W. Lake, Enhanced Oil Recovery (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  21. J.T. Oden and K.S. Vemaganti, Adaptive hierarchical modeling of heterogeneous structures, Phys. D: Nonlinear Phenomena 133 (1999) 404-415.

    Google Scholar 

  22. J.T. Oden and K.S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys. 164 (2000) 22-47.

    Google Scholar 

  23. D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation (Elsevier, Amsterdam, 1977).

    Google Scholar 

  24. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation, Soc. Petrol. Engrg. J. (1978) 183-194.

  25. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic permeability, Soc. Petrol. Engrg. J. (1983) 531-543.

  26. M. Peszynska, M.F. Wheeler and I. Yotov, Mortar upscaling for multiphase flow in porous media (2001) submitted.

  27. M. Quintard and S. Whitaker, Two-phase flow in heterogeneous porous media: The method of large-scale averaging, Transport Porous Media 3 (1988) 357-413.

    Google Scholar 

  28. R.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Vol. 606 (Springer, New York, 1977) pp. 292-315.

    Google Scholar 

  29. R.K. Romeu and B. Noetinger, Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media, Water Resourc. Res. 31 (1995) 943-959.

    Google Scholar 

  30. J.M. Thomas, Sur l'analyse numerique des methodes d'elements finis hybrides et mixtes, Ph.D. thesis, Sciences Mathematiques, l'Université Pierre et Marie Curie (1977).

  31. J. Xu, The method of subspace corrections, J. Comput. Appl. Math. 128 (2001) 335-362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbogast, T. Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow. Computational Geosciences 6, 453–481 (2002). https://doi.org/10.1023/A:1021295215383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021295215383

Navigation