Skip to main content
Log in

A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Research on plankton ecology in the oceans has traditionally been conducted via two scientific approaches: in situ (in the field) and in vitro (in the laboratory). There is, however, a third approach: exploring plankton dynamics in silico, or using computer models as tools to study marine ecosystems. Models have been used for this purpose for over 60 years, and the innovations and implementations of historical studies provide a context for how future model applications can continue to advance our understanding. To that end, this paper presents a chronology of the in silico approach to plankton dynamics, beginning with modeling pioneers who worked in the days before computers. During the first 30 years of automated computation, plankton modeling focused on formulations for biological processes and investigations of community structure. The changing technological context and conceptual paradigms of the late-1970s and 1980s resulted in simulations becoming more widespread research tools for biological oceanographers. This period saw rising use of models as hypothesis-testing tools, and means of exploring the effects of circulation on spatial distributions of organisms. Continued computer advances and increased availability of data in the 1990s allowed old approaches to be applied to old and new problems, and led to developments of new approaches. Much of the modeling in the new millennium so far has incorporated these sophistications, and many cutting-edge applications have come from a new generation of plankton scientists who were trained by modeling gurus of previous eras. The future directions for modeling plankton dynamics are rooted in the historical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksnes, D. L. & M. D. Ohman, 1996. A vertical life table approach to zooplankton mortality estimation. Limnol. Oceanogr. 41 (7): 1461-1469.

    Google Scholar 

  • Aksnes, D. L., C. B. Miller, M. D Ohman & S. N. Wood, 1997. Estimation techniques used in studies of copepod population dynamics — a review of underlying assumptions. Sarsia 82: 279-296.

    Google Scholar 

  • Anderson, D. M., F. M. Morel & R. R. Guillard, 1978. Growth and limitation of a coastal diatom by low zinc ion activity. Nature 276: 70-71.

    Google Scholar 

  • Anderson, T. R., 1992. Modelling the influence of food C:N ratio, and respiration on growth and nitrogen excretion in marine zooplankton and bacteria. J. Plankton Res. 14 (12): 1645-1671.

    Google Scholar 

  • Armstrong, R. A., 1994. Grazing limitation and nutrient limitation in marine ecosystems: steady-state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39 (3): 597-608.

    Google Scholar 

  • Armstrong, R. A., 1999. Stable model structures for representing biogeochemical diversity and size spectra in plankton communities. J. Plankton Res. 21 (3): 445-464.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.

    Google Scholar 

  • Baird, M. E.& S.M. Emsley, 1999. Towards a mechanistic model of plankton population dynamics. J. Plankton Res. 21 (1): 85-126.

    Google Scholar 

  • Batchelder, H. P. & C. B. Miller, 1989. Life history and population dynamics of Metridia pacifica: results from simulation modeling. Ecol. Mod. 48: 113-136.

    Google Scholar 

  • Bollens, S.M., 1988. A model of the predatory impact of larval marine fish on the population dynamics of their zooplankton prey. J. Plankton Res. 10 (5): 887-906.

    Google Scholar 

  • Boyer, C. B. & U. C. Merzbach (rev. ed.), 1991. A History of Mathematics. John Wiley & Sons, New York: 715 pp.

    Google Scholar 

  • Bryant, A. D., D. Hainbucher & M. Heath, 1998. Basin-scale advection and population persistence of Calanus finmarchicus. Fish. Oceanogr. 7 (3/4): 235-244.

    Google Scholar 

  • Campbell, J. W. & J. E. O'Reilly, 1988. Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf. Continental Shelf Res. 8 (2): 179-204.

    Google Scholar 

  • Campbell-Kelly, M. & W. Aspray, 1996. Computer: A History of the Information Machine. Basic Books, New York: 342 pp.

    Google Scholar 

  • Carlotti, F. & H.-J. Hirche, 1997. Growth and egg production of female Calanus finmarchicus: an individual-based physiological model and experimental validation. Mar. Ecol. Prog. Ser. 149: 91-104.

    Google Scholar 

  • Carlotti, F. & P. Nival, 1992. Model of copepod growth and development: moulting and mortality in relation to physiological processes during an individual moult cycle. Mar. Ecol. Prog. Ser. 84: 219-233.

    Google Scholar 

  • Carlotti, F. & G. Radach, 1996. Seasonal dynamics of phytoplankton and Calanus finmarchicus in the North Sea as revealed by a coupled one-dimensional model. Limnol. Oceanogr. 41 (3): 522-539.

    Google Scholar 

  • Carlotti, F. & A. Sciandra, 1989. Population dynamics model of Euterpina acutifrons (Copepoda: Harpacticoida) coupling individual growth and larval development. Mar. Ecol. Prog. Ser. 56 (3): 225-242.

    Google Scholar 

  • Carlotti, F. & K.-U. Wolf, 1998. A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model. Fish. Oceanogr. 7 (3/4): 191-204.

    Google Scholar 

  • Carpenter, S. R., R. C. Lathrop & A. Munoz-del-Rio, 1983. Comparison of dynamic models for edible phytoplankton. Can. J. Fish. aquat. Sci. 50 (8): 1757-1767.

    Google Scholar 

  • Caswell, H., 1989. Matrix population models: Construction, analysis and interpretation. Sinauer Associates, Sunderland, MA: 328 pp.

    Google Scholar 

  • Caswell, H. & M. G. Neubert, 1998. Chaos and closure terms in plankton food chain models. J. Plankton Res. 20 (9): 1837-1845.

    Google Scholar 

  • Crain, J. A. & C. B. Miller, 2001. Effects of starvation on intermolt development in Calanus finmarchicus copepodites: a comparison between theoretical models and field studies. Deep Sea Res. II 48: 551-566.

    Google Scholar 

  • Cushing, D. H., 1958. The effect of grazing in reducing primary production: a review. Rapp. Cons. Explor. Mer 144: 149-154.

    Google Scholar 

  • Cushing, D. H., 1959. On the nature of production in the sea. Ministry of Agriculture, Fisheries and Food of the United Kingdom, Fishery Investigations 22 (6): 1-40.

    Google Scholar 

  • Davidson, K., 1996. Modelling microbial food webs. Mar. Ecol. Prog. Ser. 145: 279-296.

    Google Scholar 

  • Davis, C. S., 1984. Interaction of a copepod population with the mean circulation on Georges Bank. J. mar. Res., 42: 573-590.

    Google Scholar 

  • Davis, C. S., G. R. Flierl, P. H. Wiebe & P. J. S. Franks. 1991. Micropatchiness, turbulence and recruitment in plankton. J. mar. Res. 49: 109-151.

    Google Scholar 

  • DeAngelis, D. L. & L. J. Gross (eds), 1992. Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems. Chapman & Hall, New York: 525 pp.

    Google Scholar 

  • Droop, M. R., 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. mar. biol. Ass. U.K. 48: 689-733.

    Google Scholar 

  • Ducklow, H.W., 1994. Modeling the microbial food web. Microbial Ecol. 28: 303-319.

    Google Scholar 

  • Ducklow, H. W, M. J. R. Fasham & A. F. Vezina, 1989. Derivation and analysis of flow networks for open ocean plankton systems. In Wulff, F., J. G. Field & K. H. Mann (eds), Network Analysis in Marine Ecosystems. Springer-Verlag, New York: 159-205.

    Google Scholar 

  • Dugdale, R. C., 1967. Nutrient limitation in the sea: Dynamics, identification and significance. Limnol. Oceanogr., 12: 685-695.

    Google Scholar 

  • Dugdale, R. C. & J. J. Goering, 1967. Uptake of new and regenerated nitrogen in primary productivity. Limnol. Oceanogr. 12: 196-206.

    Google Scholar 

  • Edwards, A.M., 2001. Adding detritus to a nutrient-phytoplanktonzooplankton model: a dynamical-systems approach. J. Plankton Res 23 (4): 389-413.

    Google Scholar 

  • Edwards, A. E. & M. A. Bees, 2001. Generic dynamics of a simple plankton population model with non-integer exponent of closure. Chaos, Solitons and Fractals 12: 289-300.

    Google Scholar 

  • Edwards, A. M. & A. Yool, 2000. The role of higher predation in plankton population models. J. Plankton Res. 22 (6): 1085-1112.

    Google Scholar 

  • Edwards, C. A., T. A. Powell & H. P. Batchelder, 2000. The stability of an NPZ model subject to realistic levels of vertical mixing. J. mar. Res. 58: 37-60.

    Google Scholar 

  • Evans, G. T., 1978. Biological effects of vertical-horizontal interactions. In Steele, J. H. (ed.), Spatial Pattern in Plankton Communities. Plenum, New York: 157-180.

    Google Scholar 

  • Evans, G. T., 1999. The role of local models and data sets in the Joint Global Ocean Flux Study. Deep Sea Research I, Oceanographic Research Papers 46 (8): 1369-1389.

    Google Scholar 

  • Evans, G. T. & M. J. R. Fasham (eds), 1993 Towards a Model of Ocean Biogeochemical Processes. NATO ASI series. Series 1. Global environmental change. Springer-Verlag, New York, Vol. 10: 350 pp.

  • Evans, G. T. & J. S. Parslow, 1985. A model of annual plankton cycles. Biol. Oceanogr. 3 (3): 327-347.

    Google Scholar 

  • Eppley, R. W. & B. J. Peterson, 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282 (5740): 677-680.

    Google Scholar 

  • Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-920.

    Google Scholar 

  • Fasham, M. J. R., 1995. Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis. Deep Sea Res. I 42 (7): 111-1149.

    Google Scholar 

  • Fasham, M. J. R., H. W. Ducklow & S. M. McKelvie, 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed-layer. J. mar. Res. 48: 591-63.

    Google Scholar 

  • Fiksen, O., 2000. The adaptive timing of diapause — a search for evolutionary robust strategies in Calanus finmarchicus. ICES-J. mar. Sci. 57 (6): 1825-1833.

    Google Scholar 

  • Fleming, R. H., 1939. The control of diatom populations by grazing. Journal du Conseil International pour l'Exploration de la Mer 14: 210-227.

    Google Scholar 

  • Flierl, G. R. & C. S. Davis, 1993. Biological effects of Gulf Stream meandering. J. mar. Res. 51 (3): 529-560.

    Google Scholar 

  • Flierl, G., D. Grunbaum, S. Levin & D. Olson, 1999. From individuals to aggregations: the interplay between behavior and physics. J. theor. Biol. 196 (4): 397-454.

    Google Scholar 

  • Franks, P. J. S., 1992. Sink or swim: accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82: 1-12.

    Google Scholar 

  • Franks, P. J. S., 1995. Coupled physical—biological models in oceanography. Reviews of Geophysics, Supplement. 1177–1187. U.S. national report to international union of geodesy and geophysics 1991–1994.

  • Franks, P. J. S., 1997a. Spatial patterns in dense algal blooms. Limnol. Oceanogr. 42 (5 part 2): 1297-1305.

    Google Scholar 

  • Franks, P. J. S., 1997b. New models for the exploration of biological processes at fronts. ICES J. mar. Sci. 54: 161-167.

    Google Scholar 

  • Franks, P. J. S. & C. Chen, 1996. Plankton production in tidal fronts: a model of Georges Bank in summer. J. mar. Res. 54: 631-651.

    Google Scholar 

  • Franks, P. J. S. & L. J. Walstad, 1997. Phytoplankton patches at fronts: a model of formation and response to wind events. J. mar. Res. 55: 1-29.

    Google Scholar 

  • Franks, P. J. S., J. S. Wroblewski & G. R. Flierl, 1986a. Prediction of phytoplankton growth in the response to the frictional decay of a warm-core ring. J. Geophys. Res. 91 (C6): 7603-7610.

    Google Scholar 

  • Franks, P. J. S., J. S. Wroblewski & G. R. Flierl, 1986b. Behavior of a simple plankton model with food-level acclimation by herbivores. Mar. Biol. 91: 121-129.

    Google Scholar 

  • Friedrichs, M., in press. Assimilation of JGOFS EqPac and Sea-WiFS Data into a Marine Ecosystem Model of the Central Equatorial Pacific Ocean. Deep Sea Res. II.

  • Friedrichs, M. A. M. & E. E. Hofmann, 2001. Physical control of biological processes in the central equatorial pacific ocean. Deep Sea Res. I 48: 1023-1069

    Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17 (6): 805-815.

    Google Scholar 

  • Frost, B. W., 1975. A threshold feeding behavior in Calanus pacificus. Limnol. Oceanogr. 20 (2): 263-266.

    Google Scholar 

  • Frost, B. W., 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39 (1): 49-68.

    Google Scholar 

  • Frost, B.W., 1993. A modelling study of processes regulating plankton standing stock and production in the open subarctic Pacific Ocean. Prog. Oceanogr. 32: 17-56.

    Google Scholar 

  • Frost, B. W. & N. C. Franzen, 1992. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Marine Ecology Prog. Ser. 83: 291-303.

    Google Scholar 

  • Frost, B.W. & M. J. Kishi, 1999. Ecosystem dynamics in the eastern and western gyres of the Subarctic Pacific — a review of lower trophic level modelling. Prog. Oceanogr. 43: 317-333.

    Google Scholar 

  • Gentleman, W. C., 2000. Factors controlling the abundance and distribution of Calanus finmarchicus in the Gulf of Maine/Georges Bank region. PhD. Thesis. Thayer School of Engineering Dartmouth College: 272 pp.

  • Gordon, H. R., D. K. Clark, J. L. Mueller & W. A. Hovis, 1980. Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with surface measurements. Science 210: 63-66.

    Google Scholar 

  • Graunt, J., 1662. Nature and political observations mentioned in a following index, and made upon the bills of mortality. T. Roycroft, London (U.K.). [Reprinted in, 1956, J. R. Newman (ed.), The World of Mathematics. Simon & Schuster, New York 3: 1420-1435].

    Google Scholar 

  • Grunbaum, D., 1998. Schooling as a strategy for taxis in a noisy environment. Evol. Ecol. 12 (5): 503-522.

    Google Scholar 

  • Grunbaum, D., 1999. Advection—diffusion equations for generalized tactic searching behaviors. J. Math. Biol. 38 (2): 169-194.

    Google Scholar 

  • Hannah, C. G., C. E. Naimie, J. W. Loder & F. E. Werner, 1998. Upper-ocean transport mechanisms from the Gulf of Maine to Georges Bank, with implications for Calanus supply. Continental Shelf Res. 17 (15): 1887-1911.

    Google Scholar 

  • Hastings, A. & T. Powell, 1991. Chaos in a three-species food chain. Ecology 72 (3): 896-903.

    Google Scholar 

  • Hill, A. E., 1991a. A mechanism for horizontal zooplankton transport by vertical migration in tidal currents. Mar. Biol. 111 (3): 485-492.

    Google Scholar 

  • Hill, A. E., 1991b. Vertical migration in tidal currents. Mar. Ecol. Prog. Ser. 75: 39-54.

    Google Scholar 

  • Hinckley, S., A. J. Hermann & B. A. Megrey, 1996. Development of a spatially explicit, individual-based modelof marine fish early life history. Mar. Ecol. Prog. Ser. 139: 47-68.

    Google Scholar 

  • Hofmann, E. E., 1988. Plankton dynamics on the outer southeastern U. S. Continental shelf. Part III: a coupled physical—biological model. J. mar. Res. 46 (4): 919-946.

    Google Scholar 

  • Hofmann, E. E. & J. W. Ambler, 1988. Plankton dynamics on the outer southeastern U. S. Continental shelf. Part II: a timedependent biological model. J. mar. Res. 46 (4): 883-917.

    Google Scholar 

  • Hofmann, E. E. & C. M. Lascara, 1998. Overview of interdisciplinary modeling for marine ecosystems. In Brink, K. H. & A. R. Robinson (eds), The Sea, Vol 10. John Wiley and Sons, New York: 507-482.

    Google Scholar 

  • Holling, C. S, 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91: 824-839.

    Google Scholar 

  • Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 45: 3-60.

    Google Scholar 

  • Hood, R. R., H. V. Wang, J. E. Purcell, E. D. Houde & L.W. Harding Jr., 1999. Modeling particles and pelagic organisms in Chesapeake Bay: Convergent features control plankton distributions. J. Geophys. Res. 1004 (C1): 1223-1243.

    Google Scholar 

  • Huntley, M. E., M. Zhou & M. D. G. Lopez, 1994. Calanoides actus in Gerlache Strait, Antarctic II. Solving an inverse problem in population dynamics. Deep Sea Res. II 41 (1): 209-227.

    Google Scholar 

  • Huston, M. A., D. L. DeAngelis & W.M. Post, 1988. New computer models unify ecological theory. BioScience 38: 682-691.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of plankton. Am. Nat. 95: 137-145.

    Google Scholar 

  • Ishizaka, J. & E. E. Hofmann, 1988. Plankton dynamics on the outer southeastern U.S. continental shelf. Part 1. Lagrangian particle tracing experiments. J. mar. Res. 46 (4): 853-882.

    Google Scholar 

  • Ivlev, V. S., 1955. Experimental ecology of the feeding of fishes. Pischepromizdat. Moscow. 302 pp. 1955. (Translated from Russian by D. Scott) New Haven: Yale University Press, 1961.

    Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21 (4): 540-547.

    Google Scholar 

  • Kawamiya, M., M. J. Kishi & N. Suginohara, 2000a. An ecosystem model for the North Pacific embedded in a general circulation model. Part I. Model description and characteristics of spatial distributions of biological variables. J. mar. Syst. 25: 129-157.

    Google Scholar 

  • Kawamiya, M., M. J. Kishi & N. Suginohara, 2000b. An ecosystem model for the North Pacific embedded in a general circulation model. Part II. Mechanisms forming seasonal variations of chlorophyll. J. mar. Syst. 25: 159-178.

    Google Scholar 

  • Kawamiya, M., M. J. Kishi, M. D. Kawser Ahmed & T. Sugimoto, 1996. Causes and consequences of spring phytoplankton blooms in Otsuchi Bay, Japan. Continental Shelf Res. 16 (13): 1683-1698.

    Google Scholar 

  • Kawamiya, M., M. J. Kishi, Y. Yamanaka & N. Suginohara, 1995. An ecological-physical coupled model applied to Station Papa. J. Oceanogr. 51: 635-664.

    Google Scholar 

  • Kendall, B. E., C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet & S. N. Wood, 1999. Inferring the Causes of Population Cycles: A Synthesis of Statistical and Mechanistic Modeling Approaches. Ecology 80 (6): 1789-1805.

    Google Scholar 

  • Kidwell, P. A. & P. Ceruzzi, 1994. Landmarks in digital computing: a Smithsonian pictorial history. Smithsonian Institutional Press, Washington. 148 pp

    Google Scholar 

  • Kleppel, G. S., C. S. Davis & K. Carter, 1996. Temperature and copepod growth in the sea: a comment on the temperaturedependent model of Huntley and Lopez. Am. Nat. 148 (2): 397-406.

    Google Scholar 

  • Kot, M., 2001. Elements of Mathematical Ecology. Cambridge University Press, Cambridge (U.K.): 464 pp.

    Google Scholar 

  • Lawson, L. M., E. E. Hofmann & Y. Spitz, 1996. Time series sampling and data assimilation in a simple marine ecosystem. Deep Sea Res. II 43 (2): 625-651.

    Google Scholar 

  • Lewis, C. V. W., C. Chen & C. S. Davis, 2001. Effect of winter wind variability on plankton transport over Georges Bank. Deep Sea Res. II 48: 137-158.

    Google Scholar 

  • Lewis, C. V. W., C. S. Davis & G. Gawarkiewicz, 1994. Wind forced biological—physical interactions on an isolated offshore bank. Deep Sea Res. II 41 (1) 51-73.

    Google Scholar 

  • Leising, A. W. & P. J. S. Franks, 2000. Copepod vertical distribution within a spatially variable food source: a simple foraging-strategy model. J. Plankton Res. 22 (6): 999-1024.

    Google Scholar 

  • Lennert-Cody, C. E. & P. J. S. Franks, 1999. Plankton patchiness in high-frequency internal waves. Mar. Ecol. Prog. Ser. 186: 59-66.

    Google Scholar 

  • Lotka, A. J., 1925. Elements of physical biology. Williams & Wilkins, Baltimore. [Reprinted in 1956: Elements of Mathematical Biology. Dover Publications, Inc., New York, New York].

    Google Scholar 

  • Lynch, D. R., W. C. Gentleman, D. J. McGillicuddy Jr. & C. S. Davis, 1998. Biological/physical simulations of Calanus finmarchicus population dynamics in the Gulf of Maine. Mar. Ecol. Prog. Ser. 169: 189-210.

    Google Scholar 

  • Malone, T. C., 1980. Size fractioned primary productivity of marine phytoplankton. In Falkowski, P. G. (ed.), Primary Production in the Sea. Plenum: 301-319.

  • Malthus, T., 1798. Essay on the principle of population, as it affects the future improvement of society with remarks on the speculations of Mr. Godwin, M. Condorcet and other writers. London, Printed for J. Johson, in St. Paul's Church-yard. [Reprinted, 1970. Penguin Books, New York].

  • Martin, J. H. & S. E. Fitzwater, 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341-343.

    Google Scholar 

  • McClaren, I. A., E. Laberge, C. J. Corkett & J.-M. Sevigny, 1989. Life cycles of four species of Pseudocalanus in Nova Scotia. Can. J. Zool. 67: 552-558.

    Google Scholar 

  • McGillicuddy, D. J. Jr., D. R. Lynch, A. M. Moore, W. C. Gentleman, C. S. Davis & C. J. Meise, 1998. An adjoint data assimilation approach to diagnosis of physical and biological controls on Pseudocalanus spp. in the Gulf of Maine-Georges Bank region. Fish. Oceanogr. 7 (3/4): 205-218.

    Google Scholar 

  • McGillicuddy, D. J. Jr., J. J. McCarthy & A. R. Robinson, 1995a. Coupling physical and biological modeling of the spring bloom in the North Atlantic (I): model formulation and one dimensional bloom processes. Deep Sea Res. I 42 (8): 1313-1357.

    Google Scholar 

  • McGillicuddy, D. J. Jr., A. R. Robinson & J. J. McCarthy, 1995b. Coupling physical and biological modeling of the spring bloom in the North Atlantic (II): Three dimensional bloom and postbloom processes. Deep Sea Res. I 42 (8): 1359-1398.

    Google Scholar 

  • Mellor, G. L. & T. Yamada, 1982. Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20: 851-875.

    Google Scholar 

  • Michaelis, L. & M. L. Menten, 1913. Die Kinetik der Invertinwirkung. Biochem. Z 49: 333-369.

    Google Scholar 

  • Miller, C. B. & K. S. Tande, 1993. Stage duration estimation for Calanus populations, a modelling study. Mar. Ecol. Prog. Ser. 102: 15-34.

    Google Scholar 

  • Miller, C. B., D. R. Lynch, F. Carlotti, W. C. Gentleman & C. V. W. Lewis, 1998. Coupling of an individual-based population dynamic model of Calanus finmarchicus to a circulation model for the Georges Bank region. Fish. Oceanogr. 7 (3/4): 219-234.

    Google Scholar 

  • Mills, E. L., 1989. Biological Oceanography, An Early History, 1870–1960. Cornell University Press, Ithaca: 378 pp.

    Google Scholar 

  • Moloney, C. L. & J. G. Field, 1991a. Modelling carbon and nitrogen flows in a microbial plankton community. In Reid, P.C., C.M. Turley & P.H. Burkill (eds), Protozoa and their Role in Marine Processes, NATO ASI Series, Vol G 25. Springer-Verlag, Berlin: 443-474.

    Google Scholar 

  • Moloney, C. L. & J. G. Field, 1991b. The size-based dynamics of plankton food webs I. A simulation model of carbon and nitrogen flows. J. Plankton Res. 13: 1103-1038.

    Google Scholar 

  • Moloney, C. L., M. O. Bergh, J. G. Field & R. C. Newell, 1986. The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation. J. Plankton Res. 8 (3): 427-445.

    Google Scholar 

  • Monod, J., 1942. Recherches sur la croissance des cultures bacteriennes. Paris: Hermann et Cie.

    Google Scholar 

  • Mullin, M. M. & E. R. Brooks, 1970a. Growth and metabolism of two planktonic copepods as influenced by temperature and type of food. In Steele, J. H. (ed.), Marine Food Chains. Oliver and Boyd, Edinburgh: 74-95.

    Google Scholar 

  • Mullin, M.M. & E. R. Brooks, 1970b. The effect of concentration of food on body weight, cumulative ingestion and rate of growth of the marine copepod Calanus helgolandicus. Limnol. Oceanogr. 15: 748-755.

    Google Scholar 

  • Ohman, M. D. & S. N. Wood, 1996. Mortality estimation for planktonic copepods: Pseudocalanus newmani in a temperate fjord. Limnol. Oceanogr. 41 (1): 126-135.

    Google Scholar 

  • Pace, M. L., J. E. Glasser & L. R. Pomeroy, 1984. A simulation analysis of continental shelf food webs. Mar. Biol. 82: 47-63.

    Google Scholar 

  • Pitchford, J. W. & J. Brindley, 1999. Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J. Plankton Res. 21 (3) 525-547.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web: a changing paradigm. BioScience 24: 499-504.

    Google Scholar 

  • Riley, G. A., 1946. Factors controlling phytoplankton populations on Georges Bank. J. mar. Res. 6: 54-73.

    Google Scholar 

  • Riley, G. A., 1947a. Seasonal fluctuations of the phytoplankton population in New England coastal waters. J. mar. Res. 6: 114-125.

    Google Scholar 

  • Riley, G. A., 1947b. A theoretical analysis of the zooplankton populations of Georges Bank. J. mar. Res. 6: 104-113.

    Google Scholar 

  • Riley, G. A., 1951. Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bulletin of the Bingham Oceanographic Collection 13 (1): 1-126.

    Google Scholar 

  • Riley, G. A., 1952. Biological Oceanography. Survey of Biological Progress 2: 79-104.

    Google Scholar 

  • Riley, G. A., 1963. Theory of food-chain relations in the ocean. In Hill, M. N. (ed.), The Sea, Vol 2, The Composition of Sea Water, Comparative and Descriptive Oceanography. John Wiley and Sons, New York: 438-463.

    Google Scholar 

  • Riley, G. A., 1976. A model of plankton patchiness. Limnol. Oceanogr. 21 (6): 873-880.

    Google Scholar 

  • Riley, G. A. & D. F. Bumpus, 1946. Phytoplankton-zooplankton relationships on Georges Bank. J. mar. Res. 6: 33-47.

    Google Scholar 

  • Riley, G. A. & R. Von Arx., 1949. Theoretical analysis of seasonal changes of the phytoplankton of Husan Harbor, Korea. J. mar. Res. 8: 60-72.

    Google Scholar 

  • Riley, G. A., H. Stommel & D. F. Bumpus, 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Oceanogr. Collection 12 (3): 1-169.

    Google Scholar 

  • Sarmiento, J. L., R. D. Slater, M. J. R. Fasham, H.W Ducklow, J. R. Toggweiler & G. T. Evans, 1993. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem. Cycles 7: 417-450.

    Google Scholar 

  • Shore, J. A., C. G. Hannah & J. W. Loder, 2000. Drift pathways on the western Scotian Shelf and its environs. Can. J. Fish. aquat. Sci. 57 (12): 2488-2505.

    Google Scholar 

  • Slagstad, D. & K. S. Tande, 1996. The importance of seasonal vertical migration in across shelf transport of Calanus finmarchicus. Ophelia 44: 189-205.

    Google Scholar 

  • Steele, J. H., 1956. Plant production on the Fladen Ground. J. mar. biol. Ass. U.K. 35: 1-33.

    Google Scholar 

  • Steele, J. H., 1958. Plant production in the northern North Sea. Scottish Home Department, Mar. Res. 7: 1-36.

    Google Scholar 

  • Steele, J. H., 1959. The quantitative ecology of marine phytoplankton. Biol. Rev. 34: 129-158.

    Google Scholar 

  • Steele, J. H., 1961. Primary Production. In Sears, M. (ed.), Oceanography, AAAS Publ. no. 67. Washington D. C. 519-538.

  • Steele, J. H. 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge (U.K.): 128 pp.

    Google Scholar 

  • Steele, J. H. & B. W. Frost, 1977. The structure of plankton communities. Phil. Trans. r. Soc. Lond. B, 280: 485-534.

    Google Scholar 

  • Steel, J. H. & E. W. Henderson, 1981. A simple plankton model. Am. Nat. 117 (5): 676-691.

    Google Scholar 

  • Steele, J. H. & E. W. Henderson, 1992. The role of predation in plankton models. J. Plankton Res. 14 (1): 157-172.

    Google Scholar 

  • Steele, J. H. & M. M. Mullin, 1977. Zooplankton Dynamics. In Goldberg, E.D., I.N. McCave, J. J. O'Brien & J. H. Steele (eds), The Sea, Vol 6. Wiley, New York: 857-890.

    Google Scholar 

  • Sverdrup, H. V., M.W. Johnson & R. H. Fleming, 1942. The Oceans their Physics, Chemistry and General Biology. Prentice-Hall, New York: 1087 pp.

    Google Scholar 

  • Thingstad, T. F., 1987. Utilization of N, P and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of ‘maintenance’ metabolism. Mar. Ecol. Prog. Ser. 35: 99-109.

    Google Scholar 

  • Thingstad, T. F & B. Pergerud, 1985. Fate and effect of allochthonous organic material in aquatic microbial ecosystems. An analysis based on chemostat theory. Mar. Ecol. Prog. Ser. 21: 47-62.

    Google Scholar 

  • Verhulst, P.-F., 1845. Recherches mathematiques sur la loi d'accroisement de la population. Noveaux Memoires de l'Academie Royale des Science et Belles-Lettres de Bruxelles 18: 3-38.

    Google Scholar 

  • Vezina, A. F. & T. Platt, 1988. Food web dynamics in the ocean. I. Best estimates of flow networks using inverse methods. Mar. Ecol. Prog. Ser. 42: 269-287.

    Google Scholar 

  • Vidal, J., 1980a. Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 111-134.

    Google Scholar 

  • Vidal, J., 1980b. Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature, and body size on the development and molting rates of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 195-202.

    Google Scholar 

  • Voltera, V., 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. R. Accad. Naz. Dei lincei. Ser. VI (2). [Translated into English by M. E. Wells 1928, Journal du Conseil International pour l'Exploration de la Mer 3: 1-51.]

  • Walsh, J. J. & R. C. Dugdale, 1972. Nutrient submodels and simulation models of phytoplankton production in the sea. In Allen, H. E. & J. R. Kramer (eds), Nutrients in Natural Waters. John Wilely & Sons, New York: 171-192.

    Google Scholar 

  • Walsh, J. J., G. T. Rowe, R. L. Iverson & C. P. McRoy, 1981. Biological export of shelf carbon is a sink of the global CO2 cycle. Nature, London 291: 196-201.

    Google Scholar 

  • Werner, F. E., F. H. Page, D. R. Lynch, J. W. Loder, R. G. Lough, R. I. Perry, D. A. Greenberg & M. M. Sinclair, 1993. Influences of mean advection and simple behavior on the distribution of cod and haddock early life stages on Georges Bank. Fish. Oceanogr. 2: 43-64.

    Google Scholar 

  • Werner, F. E., R. I. Perry, R. G. Lough & C. E. Naimie, 1996. Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep Sea Res. II 43 (7–8): 1793-1822.

    Google Scholar 

  • Wroblewski, J. S., 1977. A model of phytoplankton plume formation during variable Oregon upwelling. J. mar. Res. 35 (2): 357-394.

    Google Scholar 

  • Wroblewski, J. S., 1980. A simulation of the distribution of Acartia clausi during Oregon, USA, upwelling, Aug. 1973. J. Plankton Res. 2 (1): 43-68.

    Google Scholar 

  • Wrobleski, J. S., 1982. Interaction of currents and vertical migration in maintaining Calanus marshallae in the Oregon upwelling zone — a simulation. Deep Sea Res. 29 (6A): 665-686.

    Google Scholar 

  • Wroblewski, J. S., 1983. The role of modeling in biological oceanography. Ocean Sci. Engineering 8 (3): 245-285.

    Google Scholar 

  • Wulff, F., J. G. Field & K. H. Mann (eds), 1989. Network Analysis in Marine Ecology, Coastal and Estuarine Studies. Springer-Verlag, New York: 284 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentleman, W. A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems. Hydrobiologia 480, 69–85 (2002). https://doi.org/10.1023/A:1021289119442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021289119442

Navigation