Skip to main content
Log in

Mimetic Finite Difference Methods for Diffusion Equations

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper reviews and extends the theory and application of mimetic finite difference methods for the solution of diffusion problems in strongly heterogeneous anisotropic materials. These difference operators satisfy the fundamental identities, conservation laws and theorems of vector and tensor calculus on nonorthogonal, nonsmooth, structured and unstructured computational grids. We provide explicit approximations for equations in two dimensions with discontinuous anisotropic diffusion tensors. We mention the similarities and differences between the new methods and mixed finite element or hybrid mixed finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arbogast, C.N. Dawson, P.T. Keenan, M.F. Wheeler and I. Yotov, Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM J. Sci. Comput. 18 (1997) 1-32.

    Google Scholar 

  2. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, post-processing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32.

    Google Scholar 

  3. Z. Cai, J.E. Jones, S.F. McCormick and T.F. Russel, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997) 289-315.

    Google Scholar 

  4. E.J. Caramana, D.E. Burton, M.J. Shashkov and P.P. Whalen, The construction of compatible hydro-dynamics algorithms utilizing conservation of total energy, J. Comput. Phys. 146 (1998) 227-262.

    Google Scholar 

  5. J.E. Dendy, Jr., Black box multigrid, J. Comput. Phys. 46 (1982) 366-386.

    Google Scholar 

  6. J.E. Dendy and J.D. Moulton, Some aspects of multigrid for mixed discretizations, in: Lecture Notes in Computational Science and Engineering, Vol. 14, eds. E. Dick, K. Riemslagh and J. Vierendeels (Springer, New York, 1999) pp. 80-86.

    Google Scholar 

  7. R. Hiptmair and R.H.W. Hoppe, Multilevel methods for mixed finite elements in three dimensions, Numer. Math. 82 (1999) 253-279.

    Google Scholar 

  8. J. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations and the equations of magnetic diffusion, PIER 32 (2001) 89-121.

    Google Scholar 

  9. J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, Los Alamos National Laboratory Report LA-UR-96-532 (1996).

  10. J. Hyman, M. Shashkov and S. Steinberg, The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods, Comput. Math. Appl. 42 (2001) 1527-1547.

    Google Scholar 

  11. J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations, J. Comput. Phys. 151 (1999) 881-909.

    Google Scholar 

  12. J.M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logi-cally rectangular grids, Comput. Math. Appl. 33 (1997) 81-104.

    Google Scholar 

  13. J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Appl. Numer. Math. 25 (1997) 413-442.

    Google Scholar 

  14. J.M. Hyman and M. Shashkov, The approximation of boundary conditions for mimetic finite difference methods, Comput. Math. Appl. 36 (1998) 79-99.

    Google Scholar 

  15. J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal. 36 (1999) 788-818.

    Google Scholar 

  16. J.M. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys. 132 (1997) 130-148.

    Google Scholar 

  17. L.G. Margolin and J.J. Pyun, A method for treating hourglass pattern, LA-UR-87-439, Report of Los Alamos National Laboratory, Los Alamos, NM, USA.

  18. L. Margolin, M. Shashkov and P. Smolarkiewicz, A discrete operator calculus for finite difference approximations, Comput. Methods Appl. Mech. Engrg. 187 (2000) 365-383.

    Google Scholar 

  19. J. Morel, M. Hall and M. Shashkov, A local support-operators diffusion discretization scheme for hexahedral meshes, J. Comput. Phys. 170 (2001) 338-372.

    Google Scholar 

  20. J. Morel, R. Roberts and M. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r-meshes, J. Comput. Phys. 144 (1998) 17-51.

    Google Scholar 

  21. M. Shashkov, Conservative Finite-Difference Schemes on General Grids (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  22. M. Shashkov and S. Steinberg, Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys. 118 (1995) 131-151.

    Google Scholar 

  23. M. Shashkov and S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (1996) 383-405.

    Google Scholar 

  24. U. Trottenberg, C.W. Oosterlee and A. Schüller, Multigrid (Academic Press, San Diego, CA, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyman, J., Morel, J., Shashkov, M. et al. Mimetic Finite Difference Methods for Diffusion Equations. Computational Geosciences 6, 333–352 (2002). https://doi.org/10.1023/A:1021282912658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021282912658

Navigation