Skip to main content
Log in

High-Energy Ball Milling of NiAl(Fe) System

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

High-energy ball milling was used to promote the solubilization of iron into NiAl powder for an iron concentration range of 10–30 wt.%. The microstructural evolution induced by the intense mechanical deformations, under different milling conditions, was followed by X-ray diffraction and Mössbauer spectroscopy. The Mössbauer spectra are dominated by a magnetic sextet of about 33 T. Increasing the time and the speed of milling gives rise to a non-resolved doublet, having parameters typical of a NiAl compound with Fe atoms in solution. At the same time a reduction of lattice parameter occurs, which can be correlated to composition variations and partial disordering of the NiAl structure. Subsequent annealing modifies the Mössbauer spectra noticeably. In particular, the non-magnetic component becomes a broad singlet. Both diffraction analysis and Mössbauer spectroscopy indicate that a fcc Ni(Al,Fe) solid solution is forming in samples milled in agate. It is observed that the grain size of the milled products remains in the nanometric range even after thermal treatment, which adds interest to possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miracle, D. B., Acta Metall. Mater. 41 (1993), 694.

    Google Scholar 

  2. Darolia, R., J. Metals 43 (1991), 44.

    Google Scholar 

  3. Noebe, R. D., Bowman, R. R. and Nathal, M. V., In: N. S. Stoloff and V. K. Sikka (eds), Physical Metallurgy and Processing of Intermetallic Compounds, Chapman &; Hall Editions, London, 1996, p. 212.

    Google Scholar 

  4. Hishida, K., Kainuma, R., Ueno, N. and Nishizawa, T., Metall. Trans. 22A (1991), 441.

    Google Scholar 

  5. Liu, Z. G., Guo, J. T., Zhou, L. Z., Hu, Z. Q. and Unemoto, M., J. Mater. Sci. 32 (1997), 4857.

    Google Scholar 

  6. Lutterotti, L., Matthies, S. and Wenk, H. R., Int. Union of Crystallography (IUCr) Newsletter 21 (1999), 14.

    Google Scholar 

  7. Gialanella, S., Guella, M., Baro, M. D., Malagelada, J. and Suriñac, S., In: J. J. deBarbadillo, F. H. Froes and R. Schwarz (eds), Proc. 2nd Int. Conf. on Structural Applications of Mechanical Alloying, Vancouver, ASM Int., Materials Park, OH, USA, 1993, p. 321.

    Google Scholar 

  8. Kogachi, M., Minamigawa, S. and Nakahigashi, K., Acta Metall. Mater. 40 (1992), 1113.

    Google Scholar 

  9. Ron, M. and Mathalone, Z., Phys. Rev. B 4 (1971), 774.

    Google Scholar 

  10. Gielen, P. M. and Kaplow, R., Acta Metall. 15 (1967), 49.

    Google Scholar 

  11. Bogner, J., Steiner, W., Reissner, M., Mohn, P., Blaha, P., Schwarz, K., Krechler, R., Ipser, H.and Sepiol, B., Phys. Rev. B 58 (1998), 14 922.

    Google Scholar 

  12. Nasu, S., Gonser, U. and Preston, R. S., J. Phys. Colloque C 1 (1980), C1-385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Principi, G., Spataru, T., Maddalena, A. et al. High-Energy Ball Milling of NiAl(Fe) System. Hyperfine Interactions 139, 315–324 (2002). https://doi.org/10.1023/A:1021281619242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021281619242

Navigation