Skip to main content
Log in

Integrating classical and microbial food web concepts: evolving views from the open-ocean tropical Pacific

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Over the past half-century, and particularly the last two decades, new paradigms, perspectives and technological capabilities have greatly advanced our understanding of open-ocean pelagic ecosystems. Major new insights have come from the microbial loop concept and related discoveries, the iron limitation hypothesis and ocean time series. Focusing mainly on the tropical and subtropical Pacific Ocean, I review the influences of these new perspectives on classical views of food web complexity, phytoplankton regulation and diversity, and temporal dynamics. ``Microorganisms (bacteria, fungi, protozoa) are responsible for about 95% of the CO 2 evolved into the atmosphere, while animals contribute about 5%. These estimates are based on figures from terrestrial environments, but there is every reason to believe that microorganisms are relatively as important in the oceans''. (Lecture Note Handouts, OCN 434, Winter, 1971)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.

    Google Scholar 

  • Banse, K., 1995. Science and the organization in open-sea research: the plankton. Helgoländer Meeresunters. 49: 3-18.

    Google Scholar 

  • Barlow, M., S. Nigam & E. H. Berberry, 2001. ENSO, Pacific Decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate 14: 2105-2128.

    Google Scholar 

  • Calbet, A. & M. R. Landry, 1999. Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrohic open-ocean. Limnol. Oceanogr. 44: 1370-1380.

    Google Scholar 

  • Calbet, A., M. R. Landry & S. Nunnery, 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat. Microb. Ecol. 23: 283-292.

    Google Scholar 

  • Chisholm, S.W., 1992. Phytoplankton size. In Falkowski, P. G.& A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213-237.

    Google Scholar 

  • Chisholm, S. W., R. J. Olson, E. R. Zettler, J. Waterbury, R. Goericke & N. Welschmeyer, 1988. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334: 340-343.

    Google Scholar 

  • Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, C. Cooper, W. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen & A. Trasvina, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization in the equatorial Pacific. Nature 383: 495-501.

    Google Scholar 

  • Connell, J., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1304-1310.

    Google Scholar 

  • Deevey, G. B., 1971. The annual cycle in quantity and composition of the zooplankton in the Sargasso Sea off Bermuda. I. The upper 500 m. Limnol. Oceanogr. 16: 219-240.

    Google Scholar 

  • Duxbury, A. B. & A. C. Duxbury, 1996. Fundamentals of Oceanography. Wm. C. Brown, Dubuque: 308 pp.

    Google Scholar 

  • Estep, K. W. & F. MacIntyre, 1989. Taxonomy, life cycle, distribution and dasmotrophy of Chrysochromulina: a theory accounting for scales, haptonema, muciferous bodies and toxicity. Mar. Ecol. Prog. Ser. 57: 11-21.

    Google Scholar 

  • Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114-1119.

    Google Scholar 

  • Frost, B. W. & N. C. Franzen, 1992. Grazing vs. iron limitation in the control of phytoplankton stock and nutrient concentration: A chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83: 291-303.

    Google Scholar 

  • Garrison, T., 1993. Oceanography. An Introduction to Marine Science. Wadsworth, Belmont: 539 pp.

    Google Scholar 

  • Grice, G. D. & A. D. Hart, 1962. The abundance and seasonal occurrence and distribution of the epizooplankton between New York and Bermuda. Ecol. Monogr. 32: 287-309.

    Google Scholar 

  • Gross, G. M., 1972. Oceanography. A View of the Earth. Prentice-Hall, Englewood Cliffs: 497 pp.

    Google Scholar 

  • Guillou, L., M.-J. Chretiennot-Dinet, S. Boulben, S. Y. Moon-van der Staay & D. Vaulot, 1999. Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150: 383-398.

    Google Scholar 

  • Hardy, A. C., 1924. The herring in relation to its animate environment, Part I. The food and feeding habits of the herring with special reference to the east coast of England. Fish. Invest. Lond. (Ser. 2) 7: 1-53.

    Google Scholar 

  • Hardy, A. C., 1959. The Open Sea: its Natural History. Part II. Fish & Fisheries. Collins, London: 322 pp.

    Google Scholar 

  • Hare, S. R. & N. J. Mantua, 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47: 103-145.

    Google Scholar 

  • Hayward, T. L., E. L. Venrick & J. A. McGowan, 1983. Environmental heterogeneity and plankton community structure in the central North Pacific. J. mar. Res. 41: 711-729.

    Google Scholar 

  • Isaacs, J. D., 1973. Potential trophic biomasses and trace-substance concentrations in unstructured marine food webs. Mar. Biol. 22: 97-104.

    Google Scholar 

  • Karl, D. M., 1999. A sea of change: Biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2: 181-214.

    Google Scholar 

  • Karl, D. M., R. R. Bidigare & R. M. Letelier, 2001. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Res. II 48: 1449-1470.

    Google Scholar 

  • Landry, M. R., 1977. A review of important concepts in the trophic organization of pelagic ecosystems. Helgoländer Meeresunters. 30: 8-17.

    Google Scholar 

  • Landry, M. R., H. Al-Mutairi, K. E. Selph, S. Christensen & S. Nunnery, 2001. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep-Sea Res. II. 48: 2037-2062.

    Google Scholar 

  • Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity & J. R. White, 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42: 405-418.

    Google Scholar 

  • Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000b. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201: 57-72.

    Google Scholar 

  • Landry, M. R. & D. L. Kirchman, 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II. (in press)

  • Landry, M. R., M. E. Ondrusek, S. J. Tanner, S. L. Brown, J. Constantinou, R. R. Bidigare, K. H. Coale & S. Fitzwater, 2000a. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201: 27-42.

    Google Scholar 

  • Laws, E. A., G. R. DiTullio & D. G. Redalje, 1987. High phytoplankton growth and production rates in the North Pacific subtropical gyre. Limnol. Oceanogr. 32: 905-918.

    Google Scholar 

  • Letelier, R. M. & D.M. Karl, 1996. The role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar. Ecol. Prog. Ser. 133: 263-273.

    Google Scholar 

  • Longhurst, A. R., 1967. Diversity and trophic structure of zooplankton in the California Current. Deep-Sea Res. 14: 393-408.

    Google Scholar 

  • Mann, E. L. & S. W. Chisholm, 2000. Iron limits the cell division rate of Prochlorococcus in the Eastern Equatorial Pacific. Limnol. Oceanogr. 45: 1067-1076.

    Google Scholar 

  • McGowan, J. A., 1977. What regulates pelagic community structure in the Pacific? In Anderson, N. R. & B. J. Zahuranec (eds), Oceanic Sound Scattering Prediction. Plenum Press, New York: 423-444.

    Google Scholar 

  • McGowan, J. A. & T. L. Hayward, 1978. Mixing and oceanic productivity. Deep-Sea Res. 25: 771-793.

    Google Scholar 

  • McGowan, J. A. & P. W. Walker, 1979. Structure in the copepod community of the North Pacific central gyre. Ecol. Monogr. 49: 195-226.

    Google Scholar 

  • McGowan, J. A. & P. W. Walker, 1985. Dominance and diversity maintenance in an oceanic ecosystem. Ecol. Monogr. 55: 103-118.

    Google Scholar 

  • Menzel, D. W. & J. R. Ryther, 1961. Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. J. Cons. int. exp. Mer, 26: 250-258.

    Google Scholar 

  • Moon-van der Staay, S. Y., R. De Wachter & D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607-610.

    Google Scholar 

  • Moore, L. R. & S. W. Chisholm, 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol. Oceanogr. 44: 628-638.

    Google Scholar 

  • Morel, F. M. M., J. G. Rueter & N. M. Price, 1991. Iron nutrition of phytoplankton and its possible importance in the ecology of open ocean regions with high nutrient and low biomass. Oceanography 4: 56-61.

    Google Scholar 

  • Mullin, M. M., 1967. On the feeding behavior of planktonic marine copepods and the separation of their ecological niches. Mar. biol. assoc. India, Proc. Symp. Crustacea, Ser. 2, Pt. 3: 955-964.

    Google Scholar 

  • Partensky, F., W. R. Hess & D. Vaulot, 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Molec. Biol. Rev. 63: 106-107.

    Google Scholar 

  • Pinet, P. R., 1998. Invitation to Oceanography. Jones and Bartlett, London: 508 pp.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499-504.

    Google Scholar 

  • Raymont, J. E. G., 1963. Plankton and Productivity in the Oceans. Pergamon Press, Oxford: 660 pp.

    Google Scholar 

  • Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the ‘paradox of plankton’. Proc. natl. Acad. Sci. 67: 1710-1714.

    Google Scholar 

  • Ryther, J. H., 1969. Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science 166: 72-76.

    Google Scholar 

  • Scharek, R., M. Latasa, D. M. Karl & R. R. Bidigare, 1999. Temporal variations in diatom abundance and downward vertical flux in the oligotrophic North Pacific gyre. Deep-Sea Res. I 46: 1051-1075.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson's heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1-7.

    Google Scholar 

  • Steele, J. H., 1974. The Structure of Marine Ecosystems. Harvard Univ. Press, Cambridge: 129 pp.

    Google Scholar 

  • Steemann Nielsen, J., 1958. The balance between phytoplankton and zooplankton in the sea. J. Cons. int. exp. Mer 23: 178-188.

    Google Scholar 

  • Strom, S. L. & E. J. Buskey, 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38: 965-977.

    Google Scholar 

  • Sumich, J. L., 1976. An Introduction to the Biology of Marine Life. Wm. C. Brown, Dubuque: 449 pp.

    Google Scholar 

  • Stoecker, D. K., 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34: 281-290.

    Google Scholar 

  • Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. int. exp. Mer 18: 287-295.

    Google Scholar 

  • Thingstad, F. T., 1998. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363: 59-72.

    Google Scholar 

  • Timonin, A. G., 1969. The quantitative relationship between different trophic groups of plankton in frontal zones of the tropical ocean. Oceanology 9: 686-694.

    Google Scholar 

  • Venrick, E. L., 1974. The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre. Limnol. Oceanogr. 19: 437-445.

    Google Scholar 

  • Venrick, E. L., 1995. Scales of variability in a stable environment: phytoplankton in the central North Pacific. In Powell, T. M. & J. H. Steele (eds), Ecological Time Series. Chapman and Hall, New York: 150-180.

    Google Scholar 

  • Venrick, E. L., J. A. McGowan, D. R. Cayan & T. L. Hayward, 1987. Climate and chlorophyll-a: long-term trends in the central North Pacific Ocean. Science 238: 70-72.

    Google Scholar 

  • Heinbokel, J. F., 1986. Occurrence of Richelia intracellularis (Cyanophyta) within diatoms Hemiaulis haukii and H. membranaceus off Hawaii. J. Phycol. 22: 399-403.

    Google Scholar 

  • Hulburt, E. N., 1963. The diversity of phytoplankton populations in oceanic, coastal, and estuarine regions. J. mar. Res. 21: 81-93.

    Google Scholar 

  • Isaacs, J. D., 1972. Unstructured marine food webs and ‘pollutant analogues’. Fish. Bull. U.S. 70: 1053-1059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landry, M.R. Integrating classical and microbial food web concepts: evolving views from the open-ocean tropical Pacific. Hydrobiologia 480, 29–39 (2002). https://doi.org/10.1023/A:1021272731737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021272731737

Navigation