Skip to main content
Log in

Phonon-Assisted Mössbauer Effect: The Vibrational Density of States of Myoglobin

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Proteins are involved in nearly all aspects of function and control of life. For many proteins, the structure alone cannot explain the function. Proteins often have to fluctuate to work. The fact that many proteins contain iron even within the active site, predestinate the various techniques of the Mössbauer effect to study these dynamics. The phonon-assisted Mössbauer effect allows the direct investigation of phonons in matter. This technique uses pulsed synchrotron radiation monochromized to about 1 meV energy bandwidth. For the present work, this method was used to yield information about the dynamics of myoglobin, the oxygen storing protein in vertebrates. It is shown that different ligands like CO or H2O at the iron site alter the local optical vibrations compared to ligand free deoxymyoglobin. Delocalised acoustic phonons can be resolved in the vicinity of the elastic line. The mode dependent mean square displacement of the iron, specific heat of vibration and second-order Doppler shift are obtained from the density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. and Shore, V. C., Nature 185 (1960), 422.

    Article  ADS  Google Scholar 

  2. Frauenfelder, H., Petsko, G. A. and Tsernoglou, D., Nature 280 (1979), 558.

    Article  ADS  Google Scholar 

  3. Parak, F. and Formanek, H., Acta Cryst. A 27 (1971), 573.

    Article  Google Scholar 

  4. Parak, F., J. de Physique 41 (1980), 71.

    Google Scholar 

  5. Keller, H. and Debrunner, P. G., Phys. Rev. Lett. 45 (1980), 68.

    Article  ADS  Google Scholar 

  6. Parak, F., Knapp, E. W. and Kucheida, D. J., Mol. Biol. 161 (1982), 177.

    Article  Google Scholar 

  7. Cusack, S. and Doster, W., Biophys. J. 58 (1990), 243.

    Article  Google Scholar 

  8. Kuczera, K., Kuriyan, J. and Karplus, M., J. Mol. Biol. 213 (1990), 351.

    Article  Google Scholar 

  9. Smith, J. C., Kuczera, K. and Karplus, M., Proc. Natl. Acad. Sci. USA 87 (1989), 1601.

    Article  ADS  Google Scholar 

  10. Smith, J. C., Quart. Rev. of Biophys. 24 (1991), 227.

    Article  Google Scholar 

  11. Melchers, B., Knapp, E. W., Parak, F., Cordone, L., Cupane, A. and Leone, M., Biophys. J. 70 (1996), 2092.

    Google Scholar 

  12. Chong, S.-H., Joti, Y., Kidera, A., Go, N., Ostermann, A., Gassmann, A. and Parak, F. G., Eur. Biophys. J. 30 (2001), 319.

    Article  Google Scholar 

  13. Gerdau, E., Rüffer, R., Winkler, H., Tolksdorf, W., Klages, C. P. and Hannon, J. P., Phys. Rev. Lett. 54 (1985), 835.

    Article  ADS  Google Scholar 

  14. Keppler, C., Achterhold, K., Ostermann, A., van Bürck, U., Rüffer, R., Sturhahn, W., Alp, E. E. and Parak, F. G., Eur. Biophys. J. 29 (2000), 146.

    Article  Google Scholar 

  15. Seto, M., Yoda, Y., Kikuta, S., Zhang, X. W. and Ando, M., Phys. Rev. Lett. 74 (1995), 3828.

    Article  ADS  Google Scholar 

  16. Sturhahn, W., Toellner, T. S., Alp, E. E., Zhang, X., Ando, M., Yoda, Y., Kikuta, S., Seto, M., Kimball, C. W. and Dabrowski, B., Phys. Rev. Lett. 74 (1995), 3832.

    Article  ADS  Google Scholar 

  17. Keppler, C., Achterhold, K., Ostermann, A., van Bürck, U., Potzel, W., Chumakov, A. I., Baron, A. Q. R., Rüffer, R. and Parak, F., Eur. Biophys. J. 25 (1997), 221.

    Article  Google Scholar 

  18. Sage, J. T., Durbin, S.M., Sturhahn, W., Wharton, D. C., Champion, P. M., Hession, P., Sutter, J. and Alp, E. E., Phys. Rev. Lett. 86 (2001), 4966.

    Article  ADS  Google Scholar 

  19. Achterhold, K., Keppler, C., Ostermann, A., van Bürck, U., Rüffer, R., Sturhahn, W., Alp, E. E. and Parak, F., Physical Review E 65 (2002), 051916-1.

    Article  ADS  Google Scholar 

  20. Teale, F. W. J., Biochim. Biophys. Acta 35 (1959), 543.

    Article  Google Scholar 

  21. Baron, A. Q. R., Nucl. Instr. Meth. A 352 (1995), 665.

    Article  ADS  Google Scholar 

  22. Toellner, T. S., Hyp. Interact. 125 (2000), 3.

    Article  Google Scholar 

  23. Singwi, K. S. and Sjölander, A., Phys. Rev. 120 (1960), 1093.

    Article  ADS  Google Scholar 

  24. Parak, F., Hartmann, H., Aumann, K. D., Reuscher, H., Rennekamp, G., Bartunik, H. and Steigemann, W., Eur. Biophys. J. 15 (1987), 237.

    Article  Google Scholar 

  25. Edwards, C., Palmer, S. B., Emsley, P., Helliwell, J. R., Glover, I. D., Harris, G. W. and Moss, D. S., Acta Cryst. A 46 (1990), 315.

    Article  Google Scholar 

  26. Johnson, D. W. and Spence, J. C. H., J. Phys. D 7 (1974), 771.

    Article  ADS  Google Scholar 

  27. Settles, M. and Doster, W., In: S. Cusack, H. Büttner, M. Ferrand, P. Langan and P. Timmis (eds), Biological Macromolecular Dynamics, Adenin Press, 1997, p. 3.

  28. Miyazaki, Y., Matsuo, T. and Suga, H., Chem. Phys. Lett. 213 (1993), 303.

    Article  ADS  Google Scholar 

  29. Parak, F. G., Ostermann, A., Gassmann, A., Scherk, C., Chong, S.-H., Kidera, A. and Go, N., In: H. Frauenfelder, G. Hummer and R. Gracia (eds), Biological Physics: Third International Symposium, 1999, p. 117.

  30. Austin, R. H., Beeson, K.W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I. C., Biochemistry 14 (1975), 5355.

    Article  Google Scholar 

  31. Steinbach, P. J., Ansari, A., Berendzen, J., Braunstein, D., Chu, K., Cowen, B. R., Ehrenstein, D., Frauenfelder, H., Johnson, J. B., Lamb, D. C., Mourant, J. R., Nienhaus, G. U., Ormos, P., Philipp, R., Xie, A. and Young, R. D., Biochemistry 30 (1991), 3988.

    Article  Google Scholar 

  32. Ostermann, A., Waschipky, R., Parak, F. G. and Nienhaus, G. U., Nature 404 (2000), 205.

    Article  ADS  Google Scholar 

  33. Hayward, S., Kitao, A. and Go, N., Proteins: Struct. Funct. Genetics 23 (1995), 177.

    Article  Google Scholar 

  34. Reinisch, L., Heidemeier, J. and Parak, F., Eur. Biophys. J. 12 (1985), 167.

    Article  Google Scholar 

  35. Bangcharoenpaurpong, O., Schomacker, K. T. and Champion, P. M., J. Am. Chem. Soc. 106 (1984), 5688.

    Article  Google Scholar 

  36. Kitagawa, T., In: T. G. Spiro (ed.), Biological Applications of Raman Spectroscopy, Vol. 3, Wiley, New York, 1988.

    Google Scholar 

  37. Sage, J. T., Morikis, D. and Champion, P. M., J. Chem. Phys. 90 (1989), 3015.

    Article  ADS  Google Scholar 

  38. Sassaroli, M., Dasgupta, S. and Rousseau, D. L., J. Biol. Chem. 261 (1979), 13704.

    Google Scholar 

  39. Wells, A. V., Sage, J. T., Morikis, D., Champion, P. M., Chiu, M. L. and Sligar, S. G., J. Am. Chem. Soc. 113 (1991), 9655.

    Article  Google Scholar 

  40. Teraoka, J. and Kitagawa, T., J. Biol. Chem. 256 (1981), 3969.

    Google Scholar 

  41. Tsubaki, M., Srivastava, R. B. and Yu, N.-T., Biochemistry 21 (1982), 1132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achterhold, K., Sturhahn, W., Alp, E.E. et al. Phonon-Assisted Mössbauer Effect: The Vibrational Density of States of Myoglobin. Hyperfine Interactions 141, 3–12 (2002). https://doi.org/10.1023/A:1021254003628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021254003628

Keywords

Navigation