Boundary-Layer Meteorology

, Volume 106, Issue 3, pp 383–410 | Cite as

Modification Of The Standard -Equation For The Stable Abl Through Enforced Consistency With Monin–Obukhov Similarity Theory

  • Frank R. Freedman
  • Mark Z. Jacobson


A condition is derived for consistency of the standard∈-equation with Monin–Obukhov (MO) similarity theory of thestably-stratified surface layer. The condition is derivedby extending the procedure used to derive the analogous condition forneutral theory to stable stratification. It is shown that consistencywith MO theory requires a function of flux Richardson number, Rif, to be absorbed into either of two closure parameters, c∈ 1 or c∈ 2.Inconsistency, on the other hand, results if constant values of these are maintained for all Rif, as is done in standardapplication of the equation, and the large overpredictions ofturbulence found in such application to the one-dimensionalstable atmospheric boundary layer (1D-SBL) are traced to thisinconsistency. Guided by this, we formulate a MO-consistent∈-equation by absorbing the aforementioned function intoc∈ 1, and combine this with a Level-2.5 second-orderclosure model for vertical eddy viscosity and diffusivities.Numerical predictions of the 1D-SBL by the modified model converge to a quasi-steady state, rectifying the predictive failure of the standard∈ -equation for the case.Quasi-steady predictions of non-dimensional variables agree stronglywith Nieuwstadt's theory. Qualitative accuracy of predictionsis inferred from comparisons to field data, large-eddy simulationresults and Rossby-number similarity relationships.

∈-Equation Level-2.5 model Stable boundary layer Turbulence parameterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J. C. and Mahrt, L.: 1982, 'The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling', J. Atmos. Sci. 39, 864–878.Google Scholar
  2. Andrén, A.: 1990, 'Evaluation of a Turbulence Closure Scheme Suitable for Air Pollution Applications', J. Appl. Math. Phys. 29, 224–239.Google Scholar
  3. Andrén, A.: 1991, 'A TKE-Dissipation Model for the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 56, 207–221.Google Scholar
  4. Apsley, D. D. and Castro, I. P.: 1997, 'A Limited-Length-Scale k-ε Model for the Neutral and Stably-Stratified Atmospheric Boundary Layer', Boundary-Layer Meteorol. 83, 75–98.Google Scholar
  5. Arya, S. P. S.: 1975, 'Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer', Quart. J. Roy. Meteorol. Soc. 101, 147–161.Google Scholar
  6. Baumert, H. and Peters, H.: 2000, 'Second-Moment Closures and Length Scales forWeakly Stratified Turbulent Shear Flows', J. Geophys. Es.-Oceans 105, 6453–6468.Google Scholar
  7. Brost, R. A. and Wyngaard, J. C.: 1978, 'A Model Study of the Stably-Stratified Planetary Boundary Layer', J. Atmos. Sci. 35, 1427–1440.Google Scholar
  8. Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 'Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model', Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.Google Scholar
  9. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.Google Scholar
  10. Caughey, S. J. Wyngaard, J. C., and Kaimal, J. C.: 1979, 'Turbulence in the Evolving Stable Boundary Layer', J. Atmos. Sci. 36, 1041–1052.Google Scholar
  11. Coleman, G., Ferziger, J., and Spalart, P.: 1992, 'Direct Simulation of the Stably Stratified Turbulent Ekman Layer', J. Fluid Mech. 244, 677.Google Scholar
  12. Delage, Y.: 1997, 'Parameterising Sub-Grid Scale Vertical Transport in Atmospheric Models under Statically Stable Conditions', Boundary-Layer Meteorol. 82, 23–48.Google Scholar
  13. Derbyshire, S. H.: 1990, 'Nieuwstadt's Stable Boundary Layer Revisited', Quart J. Roy. Meteorol. Soc. 116, 127–158.Google Scholar
  14. Derbyshire, S. H.: 1995, 'Stable Boundary Layers: Observations, Models and Variability Part I: Modelling and Measurements', Boundary-Layer Meteorol. 74, 19–54.Google Scholar
  15. Durbin, P. A. and Pettersson-Reif, B. A.: 2001, Statistical Theory and Modeling for Turbulent Flow, John Wiley and Sons, Chichester, U.K., 282 pp.Google Scholar
  16. Duynkerke, P. G.: 1988, 'Application of the E-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer', J. Atmos. Sci. 45, 865–880.Google Scholar
  17. Freedman, F. R. and Jacobson, M. Z.: 2002, 'Transport-Dissipation Analytical Solutions to the E-ε Turbulence Model and their Role in Predictions of the Neutral ABL', Boundary-Layer Meteorol. 102, 117–138.Google Scholar
  18. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, University Press, Cambridge, 316 pp.Google Scholar
  19. Grant, A. L. M.: 1997, 'An Observational Study of the Evening Transition Boundary Layer', Quart. J. Roy. Meteorol. Soc. 123, 657–677.Google Scholar
  20. Högström, U.: 1988, 'Non-Dimensional Wind and Temperature Profiles in Atmospheric Surface-Layer: A Reevaluation', Boundary-Layer Meteorol. 42, 55–78.Google Scholar
  21. Howell, J. F. and Sun, J.: 1999, 'Surface-Layer Fluxes in Stable Conditions', Boundary-Layer Meteorol. 90, 495–520.Google Scholar
  22. Kosovic, B. and Curry, J. A.: 2000, 'A Large Eddy Simulation of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer', J. Atmos. Sci. 57, 1052–1068.Google Scholar
  23. Lacser, A. and Arya, S. P. S.: 1986, 'A Comparative Assessment ofMixing-Length Parameterizations in the Stably Stratified Nocturnal Boundary Layer (NBL)', Boundary-Layer Meteorol. 36, 53–70.Google Scholar
  24. Launder, B. E.: 1989, 'Second-Moment Closure... and Future?', Int. J. Heat Fluid Flow 10, 282–300.Google Scholar
  25. Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B.: 1998, 'The Stably Stratified Boundary-Layer over the Great Plains: 1. Mean and Turbulence Structure', Boundary-Layer Meteorol. 42, 95–121.Google Scholar
  26. Mahrt, L.: 1999, 'Stratified Atmospheric Boundary Layers', Boundary-Layer Meteorol. 90, 375–396.Google Scholar
  27. Mellor, G. L. and Yamada, T.: 1982, 'Development of a Turbulence Closure Model for Geophysical Fluid Problems', Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  28. Nieuwstadt, F. T.M.: 1984, 'The Turbulent Structure of Stable, Nocturnal Boundary Layer', J. Atmos. Sci. 41, 2202–2216.Google Scholar
  29. Nieuwstadt, F. T. M.: 1985, 'A Model for Stationary, Stable Boundary Layer', in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environments, Clarendon Press, pp. 149–179.Google Scholar
  30. Ohya, Y.: 2001, 'Wind-Tunnel Study of Atmospheric Stable Boundary Layers over a Rough Surface', Boundary-Layer Meteorol. 98, 57–82.Google Scholar
  31. Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood, 317 pp.Google Scholar
  32. Speziale, C. G. and Bernard, P. S.: 1992, 'The Energy Decay of Self-Preserving Isotropic Turbulence Revisited', J. Fluid Mech. 241, 645–667.Google Scholar
  33. Speziale, C. G. and Gatski, T. B.: 1996, 'Analysis and Modelling of Anisotropies in the Dissipation Rate of Turbulence', J. Fluid Mech. 344, 155–180.Google Scholar
  34. Speziale, C. G. and MacGiolla-Mhuiris, N.: 1989, 'On the Prediction of Equilibrium States in Homogeneous Turbulence', J. Fluid Mech. 209, 591–615.Google Scholar
  35. Tennekes, H. and Lumley, J. L.: 1972, A First Course on Turbulence, MIT Press, Cambridge, MA, 300 pp.Google Scholar
  36. Wilcox, D. C.: 1998, Turbulence Modeling for CFD, DCW Industries Inc., La Canada, CA.Google Scholar
  37. Wyngaard, J. C.: 1975, 'Modeling the Planetary Boundary Layer-Extension to the Stable Case', Boundary-Layer Meteorol. 71, 277–296.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Frank R. Freedman
    • 1
  • Mark Z. Jacobson
    • 1
  1. 1.Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental EngineeringStanford UniversityStanfordU.S.A

Personalised recommendations