Skip to main content
Log in

Particle and prey detection by mechanoreceptive copepods: a mathematical analysis

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

When particles move through fluids, they produce far-field pressure differences and near-field fluid deformations. Here we evaluate if a copepod, relying on mechanoreceptive antennulary setal hairs, can detect pressure changes caused by a variety of signal sources. We first provide a correction of the copepod mechanoreception model of Legier-Visser et al. (1986), showing how an object above a minimum size should be detectable. The pressure change ΔP created by an object of this minimum size was 385 dynes/cm2, based on biomechanical relationships for a rigid seta bending with respect to the exoskeletal body and using the neurophysiological detection threshold of a 10 nm bend of the sensory seta (Yen et al., 1992). The ΔP for: a 3 μm particle = 0.01 dynes/cm2, a 50 μm particle = 0.16 dynes/cm2, an escaping nauplius = 78 dynes/cm2, a revolving prey = 10−5 dynes/cm2, a 1 mm copepod escaping at 1 m/s at a distance of 1 mm from the mechanoreceptive sensory hairs of its captor = 312 dynes/cm2. Only the copepod escaping at high-speed close to the captor would create a pressure difference that could elicit a response. At this point, we conclude that pressure differences are rarely of a magnitude that is perceptible and that additional information must be derived for a copepod to detect prey. Other signals include fluid deformations as well as other types of stimuli (odor, shadows). Like most organisms, a copepod will rely on all sensory modalities to find food, avoid predators, and track mates, assuring their survival in the aquatic environment. It also is possible that the biomechanical model is insufficient for estimating pressure differences causing the cuticular deformation or that further analysis is necessary to improve our certainty of the sensitivity of the copepod seta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz, M. & J. R. Strickler, 1988. Locomotion in copepods: Pattern of movements and energetics of Cyclops. Hydrobiologia 167-168: 409-414

    Google Scholar 

  • Alexander, D. E., J. Blodig & S-Y. Hsieh, 1995. Relationship between function and mechanical properties of the pleopods of isopod crustaceans. Invert. Biol. 114: 169-179.

    Google Scholar 

  • Bundy, H. M., T. F. Gross, H. A. Vanderploeg & J. R. Strickler, 1998. Perception of inert particles by calanoid copepods: behavioral observations and a numerical model. J. Plankton Res. 20: 2129-2152.

    Google Scholar 

  • Doall, M. H., J. R. Strickler, D. M. Fields & J. Yen, 2001. Mapping the attack volume of a free-swimming planktonic copepod, Euchaeta rimana. Marine Biology. ‘Online Publication, DOI: 10.1007/s00227-001-0735-z’.

  • Fields, D. M., D. S. Shaeffer & M. J. Weissburg, 2001. Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar. Ecol. Progr. Ser.: 227: 173-186.

    Google Scholar 

  • Fields, D.M. & J. Yen, accepted. Fluid mechanosensory stimulation of behavior from a planktonic marine copepod Euchaeta rimana Bradford. J. Plankton Res.

  • Fields, D. M. & J. Yen, 1997. The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plankton Res. 19: 1289-1304.

    Google Scholar 

  • Fields, D. M., 1996. Interactions of marine copepods with a moving fluid environment. Ph.D. thesis. SUNY-Stony Brook.

  • Forward, R. B., Jr., 1988. Diel vertical migration: zooplankton photobiology and behavior. Oceanogr. mar. biol. Annu. Rev. 26: 361-393.

    Google Scholar 

  • Harris, G. G. & W. A. van Bereijk, 1962. Evidence that the lateralline organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. am. 34: 1831-1841.

    Google Scholar 

  • Hawkins, A. S. & A. A. Myrberg, 1983. Hearing and sound communication under water. In Lewis, B. (ed.), Bioacoustics, a Comparative Approach. Academic Press, New York: 347-405.

    Google Scholar 

  • Jensen, M. & T. Weis-Fogh, 1962. Biology and physics of locust flight V: strength and elasticity of locust cuticle. Phil. Trans. r. Soc. B 245: 137-169.

    Google Scholar 

  • Jiang, H., T. R. Osborn & C. Meneveau, 2002. Hydrodynamic interaction between two copepods: a numerical study. J. Plankton Res. 24: 235-253.

    Google Scholar 

  • Kalmijn, A. D., 1988. Hydrodynamic and acoustic field detection. In Atema, J., R. R. Fay, A. N. Popper & W. N. Tavolga (eds), Sensory Biology of Aquatic Animals. Springer-Verlag, New York. U.S.A.: 83-130.

    Google Scholar 

  • Kirk, K. L., 1985. Water flows produced by Daphnia and Diaptomus: implications for prey selection by mechanosensory predators. Limnol. Oceanogr. 30: 679-686.

    Google Scholar 

  • Langlois, W. E., 1964. Slow Viscous Flow. Macmillan Co., New York: 137 pp.

    Google Scholar 

  • Legier-Visser, M. F., J. G. Mitchell, A. Okubo & J. A. Fuhrman, 1986. Mechanoreception in calanoid copepods. Mar. Biol. 90: 529-535.

    Google Scholar 

  • Meyers, D. G. & J. M. Farmer, 1982. Gravity receptors in a microcrustacean water flea: function of antennal-socket setae in Daphnia magna. The Physiologist 25: suppl.

  • Pedley, T. J., 1977. Scale Effects in Animal Locomotion. Academic Press, New York: 545 pp.

    Google Scholar 

  • Strickler, J. R., 1975. Intra-and interspecific information flow among planktonic copepods: receptors. Verh. int. Ver. Limnol. 19: 2951-2958.

    Google Scholar 

  • Strickler, J. R., 1977. Observation of swimming performances of planktonic copepods. Limnol. Oceanogr. 22: 165-169.

    Google Scholar 

  • Tautz, J., 1979. Reception of particle oscillation in a medium-an unorthodox sensory capacity. Naturwissenschaften 66: 452-461.

    Google Scholar 

  • Vanderploeg, H. A., G.-A. Paffenhofer & J. R. Leibig, 1990. Concentration-variable interactions between calanoid copepods and particles of difference food quality: observations and hypo 173 theses. NATO ASI Series G20. In Hughes, R. H. (ed.), Behavioral Mechanisms of Food Selection. Springer-Verlag, Berlin: 595-613.

    Google Scholar 

  • Wainwright, S. A., W. D. Biggs, J. D. Curry, and J. M. Gosline, 1976. Mechanical Design in Organisms. Princeton University Press, Princeton: 423 pp.

    Google Scholar 

  • Wilson, S., 2001. Predator-prey interactions in the plankton: escape responses of three calanoid copepod species from a juvenile fish. M.S. thesis, SUNY-Stony Brook.

  • Yen, J., 1985. Selective predation by the carnivorous marine copepod Euchaeta elongata: laboratory measurements of predation rates verified by field observations of temporal/spatial feeding patterns. Limnol. Oceanogr. 30: 577-595.

    Google Scholar 

  • Yen, J., 1988. Directionality and swimming speeds in predator-prey and male-female interactions of Euchaeta rimana, a subtropical marine copepod. Bull. mar. Sci. 43 (3): 175-193.

    Google Scholar 

  • Yen, J., P. H. Lenz, D. V. Gassie & D. K. Hartline, 1992. Mechanoreception in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14 (4): 495-512.

    Google Scholar 

  • Yen, J. & D.M. Fields, 1994. Behavioral responses of Euchaeta rimana to controlled fluid mechanical stimuli. (Abstr.) EOS, Trans. am. Geophys. Union 75: 184.

    Google Scholar 

  • Yen J. & J. R. Strickler, 1996. Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invert. Biol. 3:191-205.

    Google Scholar 

  • Zaret, R. E., 1980. The animal and its viscous environment. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. Hanover: University Press of New England: 3-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, J., Okubo, A. Particle and prey detection by mechanoreceptive copepods: a mathematical analysis. Hydrobiologia 480, 165–173 (2002). https://doi.org/10.1023/A:1021249521259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021249521259

Navigation