Skip to main content
Log in

A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present the results of a study on a posteriori error control strategies for finite volume element approximations of second order elliptic differential equations. Finite volume methods ensure local mass conservation and, combined with some up-wind strategies, give monotone solutions. We adapt the local refinement techniques known from the finite element method to the finite volume discretizations of various boundary value problems for steady-state convection–diffusion–reaction equations. In this paper we derive and study a residual type error estimator and illustrate its practical performance on a series of computational tests in 2 and 3 dimensions. Our tests show that the discussed locally conservative approximation methods with a posteriori error control can be used successfully in numerical simulation of fluid flow and transport in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Angermann, An a-posteriori estimation for the solution of an elliptic singularly perturbed problem, IMA J. Numer. Anal. 12 (1992) 201-215.

    Google Scholar 

  2. L. Angermann, Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems, Computing 55(4) (1995) 305-324.

    Google Scholar 

  3. D.N. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection, SIAM J. Sci. Comput. 22(2) (2000) 431-448.

    Google Scholar 

  4. I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736-754.

    Google Scholar 

  5. R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993) 921-932.

    Google Scholar 

  6. R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing 55(4) (1995) 271-288.

    Google Scholar 

  7. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math. 4(4) (1996) 237-264.

    Google Scholar 

  8. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L 2-projection on H 1 (),Math. Comp. 71(237) (2002) 147-156.

    Google Scholar 

  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods (Springer, Berlin, 1996).

    Google Scholar 

  10. Z. Cai, On the finite volume element method, Numer. Math. 58 (1991) 713-735.

    Google Scholar 

  11. Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal. 38 (1991) 392-402.

    Google Scholar 

  12. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, Math. Model. Numer. Anal. 33 (1999) 1187-1202.

    Google Scholar 

  13. P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9 (1975) 77-85.

    Google Scholar 

  14. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  15. K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988) 361-382.

    Google Scholar 

  16. R.E. Ewing, R.D. Lazarov and Y. Lin, Finite volume element approximations for non-local reactive flows in porous media, Numer. Methods Partial Differential Equations 16 (2000) 285-311.

    Google Scholar 

  17. T. Ikeda, Maximum principle in finite element models for convection-diffusion phenomena, in: Lecture Notes in Numerical Applied Analysis, Vol. 4 (North-Holland, Amsterdam, 1983).

    Google Scholar 

  18. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Cam-bridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  19. R.D. Lazarov, J.E. Pasciak and S.Z. Tomov, Error control, local grid refinement and efficient solution algorithms for singularly perturbed problems, in: Analytical and Numerical Methods for Convection-.R. Lazarov, S. Tomov / A posteriori error estimates for finite volume method 503 Dominated and Singularly Perturbed Problems, eds. L.G. Vulkov, J.J.H. Miller and G.I. Shishkin (NOVA Science, 2000) pp. 71-82.

  20. R.H. Li and Z.Y. Chen, The Generalized Difference Method for Differential Equations (Jilin Univ. Publ. House, 1994).

  21. I.D. Mishev, Finite volume methods on Voronoi meshes, Numer. Methods Partial Differential Equations 14 (1998) 193-212.

    Google Scholar 

  22. R. Rodriguez, Some remarks on Zienkiewicz-Zhu estimator, Numer. Methods Partial Differential Equations 10 (1994) 625-635.

    Google Scholar 

  23. H.-O. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations (Springer, Berlin, 1996).

    Google Scholar 

  24. A.A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001).

    Google Scholar 

  25. M. Slodicka and R. Van Keer, A nonlinear elliptic equation with non-local boundary condition solved by linearization, Preprint 1, Department of Mathematics, University of Gent, Belgium (2000).

    Google Scholar 

  26. M. Tabata, A finite element approximation corresponding to the up-wind finite differencing, Mem. Numer. Math. 4 (1977) 47-63.

    Google Scholar 

  27. S.Z. Tomov, Tool-box for parallel adaptive computations of 3-D convection-diffusion problems using domain decomposition, Technical Report ISC-00-10-MATH, Texas A&M University (2000).

  28. R. Verfürth, A Review of a Posteriori Error Estimators and Adaptive Mesh Refinement Techniques (Teubner/Wiley, Stuttgart, 1996).

  29. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50 (1994) 67-83.

    Google Scholar 

  30. J. Xu and L. Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68 (1999) 1429-1447.

    Google Scholar 

  31. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engi-neering analysis, Internat. J. Numer. Methods Engrg. 24 (1987) 337-357.

    Google Scholar 

  32. O.C. Zienkiewicz and J.Z. Zhu, Adaptivity and mesh generation, Internat. J. Numer. Methods Engrg. 32 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarov, R., Tomov, S. A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations. Computational Geosciences 6, 483–503 (2002). https://doi.org/10.1023/A:1021247300362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021247300362

Navigation