Inert filter media for the biofiltration of waste gases – characteristics and biomass control

  • Christian KennesEmail author
  • María C. Veiga


Soil biofilters and related systems based onthe use of natural filter beds have been usedfor several years for solving specific airpollution problems. Over the past decade,significant improvements have been brought tothese original bioprocesses, among which thedevelopment and use of new inert packingmaterials. The present paper overviews the mostcommon inert packings used in biofiltration ofwaste gases and their major characteristics. Apotential problem recently encountered whenusing inert filter beds is the heterogenousdistribution of biomass on the packingmaterial, and the excessive growth andaccumulation of biomass when treating highorganic loads, eventually leading to cloggingof the biofilter and reduced efficiency.Several strategies that have been proposed forsolving such problems are described in thispaper. Technologies for controlling excessbiomass accumulation can be grouped into fourcategories based on the use of mechanicalforces, the use of specific chemicals, thereduction of microbial growth, and predation.

air pollution backwashing biomass control biotrickling filter clogging filter bed nutrients packing material predation perlite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso C, Suidan MT, Kim BR & Kim BJ (1998) Dynamic mathematical model for the biodegradation of VOCs in a biofilter: biomass accumulation study. Environ. Sci. Technol. 32: 3118-3123Google Scholar
  2. Arcangeli JP & Arvin E (1992) Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor. Appl. Microbiol. Biotechnol. 37: 510-517Google Scholar
  3. Auria R, Frere G, Morales M, Acuña ME & Revah S (2000) Influence of mixing and water addition on the removal rate of toluene vapors in a biofilter. Biotechnol. Bioeng. 68: 448-455Google Scholar
  4. Chang M-K, Voice TC & Criddle CS (1993) Kinetics of competitive inhibition and cometabolism in the degradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol. Bioeng. 41: 1057-1065Google Scholar
  5. Chitwood DE & Devinny JS (2001) Treatment of mixed hydrogen sulfide and organic vapors in a rock medium biofilter. Water Environ. Res. 73: 426-435Google Scholar
  6. Chou M-S & Wu F-L (1999) Treatment of toluene in an air stream by a biotrickling filter packed with slags. J. Air Waste Manage. Assoc. 49: 386-398Google Scholar
  7. Chung Y-C, Huand C & Tseng C.-P. (1997) Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter. J. Chem. Technol. Biotechnol. 69: 58-62Google Scholar
  8. Cox HHJ, Moerman RE, van Baalen S, van Heiningen WNM, Doddema HJ & Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol. Bioeng. 53: 259-266Google Scholar
  9. Cox HHJ & Deshusses MA (1999) Chemical removal of biomass from waste air biotrickling filters: screening of chemicals of potential interest. Water Res. 33: 2383-2391Google Scholar
  10. Davison BH & Thompson JE (1993) Sustained degradation of n-pentane and isobutane in a gas-phase bioreactor. Biotechnol. Let. 15: 633-636Google Scholar
  11. Delhoménie M-C, Bibeau L, Roy S, Brzezinski R & Heitz M(2001) Influence of nitrogen on the degradation of toluene in a compost-based biofilter. J. Chem. Technol. Biotechnol. 76: 997-1006Google Scholar
  12. Diks RMM & Ottengraf SPP (1991) Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. Bioproc. Eng. 6: 131-140Google Scholar
  13. Diks RMM, Ottengraf SPP & Van den Oever AHC (1994a) The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp. Biodegradation 5: 129-141Google Scholar
  14. Diks RMM, Ottengraf SPP & Vrijland S (1994b) The existence of a biological equilibrium in a trickling biofilter for waste gas purification. Biotechnol. Bioeng. 44: 1279-1287Google Scholar
  15. Groenestijn JW van & Hesselink PGM (1993) Biotechniques for air pollution control. Biodegradation. 4: 283-301Google Scholar
  16. Groenestijn JW van, Heiningen WNM van & Kraakman B (2001) Biofilters based on the action of fungi. Water Sci. Technol. 44: 227-232Google Scholar
  17. Juteau P, Laroque R, Rho D & LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl. Microbiol. Botechnol. 52: 863-868Google Scholar
  18. Kennes C, Cox HHJ, Veiga MC & Doddema HJ (1995) Continuous removal of benzene related compounds from waste gases. Meded. Fac. Landbouww. 60: 2279-2284Google Scholar
  19. Kennes C, Cox HHJ, Doddema HJ & Harder W (1996) Design and performance of biofilters for the removal of alkylbenzene vapors. J. Chem. Technol. Biotechnol. 66: 300-304Google Scholar
  20. Kennes C & Thalasso F (1998) Waste gas biotreatment technology. J. Chem. Technol. Biotechnol. 72: 303-319Google Scholar
  21. Kirchner K, Schlachter U & Rehm H-J (1989) Biological purification of exhaust air using fixed bacterial monocultures. Appl. Microbiol. Biotechnol. 31: 629-632Google Scholar
  22. Kirchner K, Gossen CA & Rehm H-J (1991) Purification of exhaust air containing organic pollutants in a trickle-bed bioreactor. Appl. Microbiol. Biotechnol. 35: 396-400Google Scholar
  23. Kirchner K, Wagner S & Rehm H-J (1992) Exhaust gas purification using biocatalysts (fixed bacteria monocultures)-the influence of biofilm diffusion rate (O2) on the overall reaction rate. Appl. Microbiol. Biotechnol. 37: 277-279Google Scholar
  24. Lu C, Lin M-R & Wey I (2001) Removal of pentane and styrene mixtures from waste gases by a trickle-bed air biofilter. J. Chem. Technol. Biotechnol. 76: 820-826Google Scholar
  25. Mendoza JA, Prado OJ, Veiga MC & Kennes C (2002) Comparison of physical and chemical removal of biomass in biofilters (submitted)Google Scholar
  26. Mendoza JA (2002) Ph.D. dissertation, University of La Coruña, La Coruña, SpainGoogle Scholar
  27. Mirpuri R, Jones W & Bryers JD (1997) Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol. Bioeng. 53: 535-546Google Scholar
  28. Moe WM & Irvine RL (2000) Polyurethane foam medium for biofiltration. I: Characterization and II: Operation and performance. J. Environ. Engin. 126: 815-825 and 826-832Google Scholar
  29. Moo-Young M (1985) Comprehensive Biotechnology, vol. 1. Pergamon Press, Oxford, United KingdomGoogle Scholar
  30. Morgenroth E, Schroeder ED, Chang DPY & Scow KM (1996) Nutrient limitation in a compost biofilter degrading hexane. J. Air Waste manage. Assoc. 46: 300-308Google Scholar
  31. Oh YS & Choi SC (2000) Selection of suitable packing material for biofiltration of toluene, m-and p-xylene vapors. J. Microbiol. 38: 31-35Google Scholar
  32. Okkerse WJH, Ottengraf SPP, Diks RMM, Osinga-Kuipers B & Jacobs P (1999) Long term performance of biotrickling filters removing a mixture of volatile organic compounds from an artificial waste gas: dichloromethane and methylmethacrylate. Bioprocess Eng. 20: 49-57Google Scholar
  33. Pedersen AR & Arvin E (1995) Removal of toluene in waste gases using a biological trickling filter. Biodegradation. 6: 109-118Google Scholar
  34. Pedersen AR, Moller S, Molin S & Arvin E (1997) Activity of a toluene-degrading Pseduomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol. Bioeng. 54: 131-141Google Scholar
  35. Pol A, Op den Camp HJM, Mees SGM, Kersten MASH & van der Drift C (1994) Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation. 5: 105-112Google Scholar
  36. Pol A, Van Haren FJJ, Op den Camp HJM & van der Drift C (1998) Styrene removal from waste gas with a bacterial biotrickling filter. Biotechnol. Let. 20: 407-410Google Scholar
  37. Prado OJ, Mendoza JA, VeigaMC & Kennes C (2002) Optimization of nutrient supply in a downflow gas-phase biofilter packed with an inert carrier. Appl. Microbiol. Biotechnol. (in press)Google Scholar
  38. Schönduve P, Sára M & Friedl A (1996) Influence of physiological relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biotechnol. 45: 286-292Google Scholar
  39. Smith FL, Sorial GA, Suidan MT, Breen AW, Biswas P & Brenner RC (1996) Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environ. Sci. Technol. 30: 1744-1751Google Scholar
  40. Song JH & Kinney KA (2000) Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: linking biofilm properties to bioreactor performance. Biotechnol. Bioeng. 68: 508-516Google Scholar
  41. Song JH & Kinney KA (2001) Effect of directional switching frequency on toluene degradation in a vapor-phase bioreactor. Appl. Microbiol. Biotechnol. 56: 108-113Google Scholar
  42. Veiga MC, Fraga M, Amor L & Kennes C (1997) Microbial and kinetic characterization of biofilters degrading alkylbenzene vapors under acidic conditions. In: Verachtert H & Verstraete W (Eds) International Symposium on Environmental Biotechnology (pp. 185-188). TIV, Oostende, BelgiumGoogle Scholar
  43. Veiga MC, Fraga M, Amor L & Kennes C (1999) Biofilter performance and characterization of a biocatalyst degrading alkylbenzene gases. Biodegradation 10: 169-176Google Scholar
  44. Veiga MC & Kennes C (2001) Parameters affecting performance and modeling of biofilters treating alkylbenzene-polluted air. Appl. Microbiol. Biotechnol. 55: 254-258Google Scholar
  45. Veiga MC, Prado OJ & Kennes C (2001) Start-up and long term performance of a gas phase biofilter packed with an inert carrier. Meded. Fac. Landbouww. 66: 49-55Google Scholar
  46. Weber F & Hartmans S (1995) Use of activated carbon as a buffer in biofiltration of waste gases with fluctuating concentrations of toluene. Appl. Microbiol. Biotechnol. 43: 365-369Google Scholar
  47. Weber F & Hartmans S (1996) Prevention of clogging in a biological trickling-bed reactor removing toluene from contaminated air. Biotechnol. Bioeng. 50: 91-97Google Scholar
  48. Weckhuysen B, Vriens L & Verachtert, H (1993) The effect of nutrient supplementation on the biofiltration removal of butanal in contaminated air. Appl. Microbiol. Biotechnol. 39: 395-399Google Scholar
  49. Wu G, Conti B, Leroux A, Brzezinski R, Viel G & Heitz M (1999) A high performance biofilter for VOC emission control. J. Air & Waste Manage. Assoc. 49: 185-192Google Scholar
  50. Wübker S-M & Friedrich C (1996) Reduction of biomass in a bioscrubber for waste gas treatment by limited supply of phosphate and potassium ions. Appl. Microbiol. Biotechnol. 46: 475-480Google Scholar
  51. Wübker S-M, Laurenzis A, Werner U & Friedrich C (1997) Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed. Biotechnol. Bioeng. 55: 686-692Google Scholar
  52. Yun S-I & Ohta Y (1998) Removal of gaseous n-valeric acid in the air by Rhodococcus sp. B261 immobilized onto ceramic beads. World J. Microbiol. Biotechnol. 14: 343-348Google Scholar
  53. Zhou Q, Huang YL, Tseng D-H, Shim H & Yang S-T (1998) A trickling fibrous-bed bioreactor for biofiltration of benzene in air. J. Chem. Technol. Biotechnol. 73: 359-368Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Chemical Engineering Laboratory, Campus da ZapateiraUniversity of La CoruñaLa CoruñaSpain

Personalised recommendations