Journal of Chemical Ecology

, Volume 24, Issue 8, pp 1397–1408 | Cite as

Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber

  • Martin Zimmer
  • Werner Topp


In the common woodlouse Porcellio scaber different parts of the gut were observed with respect to microbial counts, cellulose activity, and degradation of cellulose. Cellulose is mainly digested in the anterior part of the hindgut, as was indicated by the distribution of cellulolytic activity and the decrease of cellulose content inside the gut. The cellulases woodlice utilize for the degradation of litter are mainly produced by endosymbiotic bacteria in the hepatopancreas rather than by microorganisms ingested with the food. Microorganisms ingested with the litter are digested in the anterior part of the hindgut and may provide an important food source. In the posterior hindgut, bacterial proliferation ensures microbial colonization of feces.

Terrestrial isopods Oniscidea Porcellio scaber gut microbes obligate endosymbionts hepatopancreatic bacteria cellulase activity cellulose digestion litter degradation decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alikhan, M. A. 1969. The physiology of the woodlouse, Porcellio laevis Latreille (Porcellionidae, Peracarida)—I: Studies on the gut epithelium cytology and its relation to the maltase secretion. Can. J. Zool. 47:65–75.Google Scholar
  2. Biwer, A. 1961. Quantitative Untersuchungen über die Bedeutung der Asseln und der Bakterien für die Fallaubzersetzung unter Berücksichtigung der Wirkung künstlicher Düngemittelzusätze. Z. Angew. Entomol. 48:307–328, 377–394.Google Scholar
  3. Cameron, G. N., and LaPoint, T. W. 1978. Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates. Oecologia 32:349–366.Google Scholar
  4. Coughtrey, P. J., Martin, M. H., Chard, J., and Shales, S. W. 1980. Micro–organisms and metal retention in the woodlouse Oniscus asellus. Soil Biol. Biochem. 12:23–27.Google Scholar
  5. Daniel, O., and Anderson, J. M. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24:465–470.Google Scholar
  6. Francisco, D. E., Mah, R. A., and Rabin, A. C. 1973. Acridine orange–epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 93:416–421.Google Scholar
  7. Greenaway, P., and Linton, S. M. 1995. Dietary assimilation and food retention time in the herbivorous terrestrial crab Gecarcoidea natalis. Physiol. Zool. 68:1006–1028.Google Scholar
  8. Griffiths, B. S., and Wood, S. 1985. Microorganisms associated with the hindgut of Oniscus asellus (Crustacea, Isopoda). Pedobiologia 28:377–381.Google Scholar
  9. GrÜnwald, M. 1987. Adaption und Dekompositionsleistung von Landasseln (Isopoda, Oniscidea) an Standorten der Grossen Brennessel (Urtica dioica, L.). Hochschulsammlung Nat. Wiss. Biol. 20:Dissertation, Bayreuth, Germany.Google Scholar
  10. Gunnarsson, T., and Tunlid, A. 1986. Recycling of fecal pellets in isopods: microorganisms and nitrogen compounds as potential food for Oniscus asellus L. Soil. Biol. Biochem. 18:595–600.Google Scholar
  11. Hames, C. A. C., and Hopkin, S. P. 1989. The structure and function of the digestive system of terrestrial isopods. J. Zool. 217:599–627.Google Scholar
  12. Hanlon, R. D. G. 1981. Some factors influencing microbial growth on soil animal faeces. Pedobiologia 21:257–263, 264–270.Google Scholar
  13. Hartenstein, R. 1964. Feeding, digestion, glycogen, and the environmental conditions of the digestive system of Oniscus asellus. J. Insect Physiol. 10:611–621.Google Scholar
  14. Hassall, M., and Jennings, J. B. 1975. Adaptive features of gut structure and digestive physiology in the terrestrial isopod Philoscia muscorum (Scopoli 1763). Biol. Bull. 149:348–364.Google Scholar
  15. Hassall, M., and Rushton, S. P. 1984. Feeding behaviour of terrestrial isopods in relation to plant defences and microbial activity. Symp. Zool. Soc. London 53:487–505.Google Scholar
  16. Hassall, M., and Rushton, S. P. 1985. The adaptive significance of coprophagous behaviour in the terrestrial isopod Porcellio scaber. Pedobiologia 28:169–175.Google Scholar
  17. Kozlovskaja, L. S., and Striganova, B. R. 1977. Food, digestion and assimilation in desert woodlice and their relations to the soil microflora. Ecol. Bull. 25:240–245.Google Scholar
  18. KriŠtufek, V., Ravasz, K., and Pizl, V. 1992. Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 24:1499–1500.Google Scholar
  19. KriŠtufek, V., Pizl, V., and Ravasz, K. 1995. Epifluorescent microscopy of earthworms' intestinal bacteria. Acta Microbiol. Immunol. Hung. 42:39–44.Google Scholar
  20. Kukor, J. J., and Martin, M. M. 1986. The effect of acquired microbial enzymes on assimilation efficiency in the common woodlouse, Tracheoniscus rathkei. Oecologia 69:360–366.Google Scholar
  21. Lane, R. L. 1988. The digestive system of Porcello scaber Latreille, 1804 (Isopoda, Oniscoidea): histology and histochemistry. Crustaceana 55:113–128.Google Scholar
  22. Margulis, L. 1981. Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. Freeman, San Francisco.Google Scholar
  23. MÁrialigeti, K., JÁger, K., SzabÓ, I. M., Pobozsny, M., and Dzingov, A. 1984. The faecal actinomycete flora of Protracheoniscus amoenus (Woodlice; Isopoda). Acta Microbiol. Hung. 31:339–344.Google Scholar
  24. Martin, M. M. 1983. Cellulose digestion in insects. Comp. Biochem. Physiol. 75A:313–324.Google Scholar
  25. Price, P. W. 1991. The web of life: Development over 3.8 billion years of trophic relationships, pp. 263–272, in L. Margulis and R. Fester (eds.). Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, Massachusetts.Google Scholar
  26. Ray, D. L. 1959. Marine fungi and wood borer attack. Proc. Am. Wood Preserv. Assoc. 54:1–7.Google Scholar
  27. Ray, D. L., and Julian, J. R. 1952. Occurrence of cellulase in Limnoria. Nature 169:32.Google Scholar
  28. Reyes, V. G., and Tiedje, J. M. 1976. Ecology of the gut microbiota of Tracheoniscus rathkii (Crustacea, Isopoda). Pedobiologia 16:67–74.Google Scholar
  29. Scrivener, A. M., and Slaytor, M. 1994. Properties of the endogenous cellulase from Panestia cribrata Saussure and purification of major endo–β–1,4–glucanase components. Insect Biochem. Mol. Biol. 24:223–231.Google Scholar
  30. Skambracks, D. 1996. The significance of saprophagous earthworms on nutrient cycling in forest soil. PhD thesis (text in German). University of Cologne, Germany.Google Scholar
  31. Slaytor, M. 1992. Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol. 103B:775–784.Google Scholar
  32. Storch, V. 1987. Microscopic anatomy and ultrastructure of the stomach of Porcellio scaber (Crustacea, Isopoda). Zoomorphology 106:301–311.Google Scholar
  33. Storch, V., and Štrus, J. 1989. Microscopy anatomy ultrastructure of the alimentary canal in terrestrial isopods. Monit. Zool. Ital. (NS) Monogr. 4:105–126.Google Scholar
  34. Teather, R. M., and Wood, P. J. 1982. Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777–780.Google Scholar
  35. Treves, D. S., and Martin, M. M. 1994. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). J. Chem. Ecol. 20:2003–2020.Google Scholar
  36. Uesbeck, M., and Topp, W. 1995. The effect of leaf litter, microorganisms and Collembola on the food allocation of Oniscus asellus, pp. 121–132, in M. A. Alikhan (ed.). Crustacean Issues 9: Terrestrial Isopod Biology. Balkema, Rotterdam.Google Scholar
  37. Ullrich, B., Storch, V., and Schairer, H. 1991. Bacteria on the food, in the intestine and on the faeces of the woodlouse Oniscus asellus (Crustacea, Isopoda). Pedobiologia 35:41–51.Google Scholar
  38. Wood, S., and Griffiths, B. S. 1988. Bacteria associated with the hepatopancreas of the woodlice Oniscus asellus and Porcellio scaber (Crustacea, Isopoda). Pedobiologia 31:89–94.Google Scholar
  39. Wood, T. M., and Garcia–Campayo, V. 1990. Enzymology of cellulose degradation. Biodegradation 1:147–161.Google Scholar
  40. Zimmer, M. 1998. Interactions of representatives of the saprophagous soil macrofauna and saprotrophic microorganisms. (text in German). Cuvillier, Göttingen.Google Scholar
  41. Zimmer, M., and Topp, W. 1997a. Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)? Biol. Fertil. Soils 24:435–441.Google Scholar
  42. Zimmer, M., and Topp, W. 1997b. Homeostatic responses in the gut of Porcellio scaber (Isopoda: Oniscidea) optimize litter degradation. J. Comp. Physiol. B 167:582–585.Google Scholar
  43. Zimmer, M., and Topp, W. 1998. Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases? Biol. Fertil. Soils 26:155–156.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Martin Zimmer
    • 1
  • Werner Topp
    • 1
  1. 1.Department of Zoology–Physiological EcologyUniversity of CologneKölnGermany

Personalised recommendations