Abstract
Understanding the processes that regulate phytoplankton biomass and growth rate remains one of the central issues for biological oceanography. While the role of resources in phytoplankton regulation (`bottom up' control) has been explored extensively, the role of grazing (`top down' control) is less well understood. This paper seeks to apply the approach pioneered by Frost and others, i.e. exploring consequences of individual grazer behavior for whole ecosystems, to questions about microzooplankton–phytoplankton interactions. Given the diversity and paucity of phytoplankton prey in much of the sea, there should be strong pressure for microzooplankton, the primary grazers of most phytoplankton, to evolve strategies that maximize prey encounter and utilization while allowing for survival in times of scarcity. These strategies include higher grazing rates on faster-growing phytoplankton cells, the direct use of light for enhancement of protist digestion rates, nutritional plasticity, rapid population growth combined with formation of resting stages, and defenses against predatory zooplankton. Most of these phenomena should increase community-level coupling (i.e. the degree of instantaneous and time-dependent similarity) between rates of phytoplankton growth and microzooplankton grazing, tending to stabilize planktonic ecosystems. Conversely, phytoplankton, whose mortality in the sea is overwhelmingly due to microzooplankton grazing, should experience strong pressure to evolve grazing resistence. Strategies may include chemical, morphological, and `nutrient deficit' defenses. Successful deployment of these defenses should lead to uncoupling between rates of phytoplankton growth and microzooplankton grazing, promoting instability in ecosystem structure. Understanding the comparative ecosystem dynamics of various ocean regions will require an appreciation of how protist grazer behavior and physiology influence the coupling between rates of phytoplankton growth and microzooplankton grazing.
This is a preview of subscription content,
to check access.References
Andersson, A., U. Larsson & Å. Hagström, 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33: 51-57.
Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser. 130: 85-96.
Banse, K., 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, New York: 409-440.
Bernard, C. & F. Rassoulzadegan, 1993. The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J. Plankton Res. 15: 361-373.
Boenigk, J., C. Matz, K. Jurgens & H. Arndt, 2001a. The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol. 42: 168-176.
Boenigk, J., C. Matz, K. Jürgens & H. Arndt, 2001b. Confusing selective feeding with differential digestion in bacterivorous nanoflagellates. J. Eukaryot. Microbiol. 48: 425-432.
Boyd, P.W., In press. The role of iron in the biogeochemistry of the Southern Ocean and Equatorial Pacific: a comparison of in situ iron enrichments. Deep-Sea Res. II.
Broglio, E., M. Johansson & P. R. Jonsson, 2001. Trophic interaction between copepods and ciliates: effects of prey swimming behavior on predation risk. Mar. Ecol. Prog. Ser. 220: 179-186.
Burkill, P. H., E. S. Edwards, A. W. G. John & M. A. Sleigh, 1993. Microzooplankton and their herbivorous activity in the northeastern Atlantic Ocean. Deep-Sea Res. II 40: 479-493.
Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn & N. J. P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93: 581-590.
Buskey, E. J., 1997. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Mar. Ecol. Prog. Ser. 153: 77-89.
Buskey, E. J. & C. J. Hyatt, 1995. Effects of the Texas (U.S.A.) ‘brown tide’ alga on planktonic grazers. Mar. Ecol. Prog. Ser. 126: 285-292.
Buskey, E., L. Mills & E. Swift, 1983. The effects of dinoflagellate bioluminescence on the swimming behavior of a marine copepod. Limnol. Oceanogr. 28: 575-579.
Butler, N. M., C. A. Suttle & W. E. Neill, 1989. Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologica 78: 368-372.
Calado, A. J., S. C. Craveiro & O. Moestrup, 1998. Taxonomy and ultrastructure of a freshwater, heterotrophic Amphidinium (Dinophyceae) that feeds on unicellular protists. J. Phycol. 34: 536-554.
Calbet, A., M. R. Landry & S. Nunnery, 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat. Microb. Ecol. 23: 283-292.
Capriulo, G. M. & E. J. Carpenter, 1980. Grazing by 35–202 µm micro-zooplankton in Long Island Sound. Mar. Biol. 56: 319-326.
Capriulo, G.M., K. Gold & A. Okubo, 1982. Evolution of the lorica in tintinnids: a possible selective advantage. Ann. Inst. oceanogr. 58: 319-324.
Caron, D. A., 2000. Symbiosis and mixotrophy among pelagic microorganisms. In Kirchman, D. A. (ed.), Microbial Ecology of the Oceans. John Wiley and Sons, New York: 495-523.
Caron, D. A., J. C. Goldman & T. Fenchel, 1990. Protozoan respiration and metabolism. In Capriulo, G. M. (ed.), Ecology of Marine Protozoa. Oxford University Press, New York: 307-322.
Carrias, J.-F., A. Thouvenot, C. Amblard & T. Sime-Ngando, 2001. Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174.
Chesson, J., 1983. The estimation and analysis of preference and its relationship to foraging models. Ecology 64: 1297-1304.
Cowles, T. J., R. J. Olson & S.W. Chishom, 1988. Food selection by copepods: discrimination on the basis of food quality. Mar. Biol. 100: 41-49.
del Giorgio, P. A., J. M. Gasol, D. Vaqué, P. Mura, S. Agustí & C.M. Duarte, 1996. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169-1179.
DeMott, W. R., 1995. The influence of prey hardness on Daphnia's selectivity for large prey. Hydrobiologia 307: 127-138.
Dolan, J. R., 1991. Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuar. coast. shelf Sci. 33: 137-152.
Dolan, J. R., C. L. Gallegos & A. Moigis, 2000. Dilution effects on microzooplankton in dilution grazing experiments. Mar. Ecol. Prog. Ser. 200: 127-139.
Droop, M. R., 1966. The role of algae in the nutrition of Heteramoeba clara Droop, with notes on Oxyrrhis marina Dujardin and Philodina roseola Ehrenberg. In Barnes, H. (ed.), Some Contemporary Studies in Marine Science. G. Allen and Unwin Ltd., London: 269-282.
Edwards, A. M. & A. Yool, 2000. The role of higher predation in plankton population models. J. Plankton Res. 22: 1085-1112.
Fasham, M. J. R., H. W. Ducklow & S. M. McKelvie, 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. mar. Res. 48: 591-639.
Fenchel, T., 1987. Ecology of protozoa. Science Tech., Madison: 197 pp.
Fessenden, L. & T. J. Cowles, 1994. Copepod predation on phagotrophic ciliates in Oregon coastal waters. Mar. Ecol. Prog. Ser. 107: 103-111.
Finlay, B. J., 1983. Influence of physiological state on indices of respiration rate in protozoa. Comp. Biochem. Physiol. 74A: 211-219.
Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805-815.
Frost, B. W., 1975. A threshold feeding behavior in Calanus pacificus. Limnol. Oceanogr. 20: 263-266.
Frost, B. W., 1980. Grazing. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley: 465-491.
Frost, B. W., 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49-68.
Frost, B. W., 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36: 1616-1630.
Frost, B.W., 1993. A modelling study of processes regulating plankton standing stock and production in the open subarctic Pacific Ocean. Prog. Oceanogr. 32: 17-56.
Frost, B. W. & N. C. Franzen, 1992. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83: 291-303.
Gall, M. P., P. W. Boyd, J. Hall, K. A. Safi & H. Chang, 2001. Phytoplankton processes. Part 1: community structure during the Southern Ocean iron RElease Experiment (SOIREE). Deep-Sea Res. II 48: 2551-2570.
Gifford, D. J., 1993. Protozoa in the diets of Neocalanus spp. in the oceanic subarctic Pacific Ocean. Prog. Oceanogr. 32: 223-237.
Goldman, J. C. & M. R. Dennett, 1990. Dynamics of prey selection by an omnivorous flagellate. Mar. Ecol. Prog. Ser. 59: 183-194.
Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215.
Gonzalez, J. M., 1996. Efficient size-selective bacterivory by phagotrophic nanoflagellates in aquatic systems. Mar. Biol. 126: 785-789.
Gonzalez, J. M.& C. A. Suttle, 1993. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94: 1-16.
Gonzalez, J. M., E. B. Sherr & B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. envir. Microbiol. 56: 583-589.
Gonzalez, J. M., E. B. Sherr & B. F. Sherr, 1993. Differential feeding by marine flagellates on growing vs. starving, and on motile vs. non-motile, bacterial prey. Mar. Ecol. Prog. Ser. 102: 257-267.
Halliwell, B. & J. M. C. Gutteridge, 1989. Free Radicals in Biology and Medicine, 2nd edn. Clarendon Press, Oxford: 543 pp.
Hansen, B., P. K. Bjornsen & P. J. Hansen, 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39: 395-403.
Hansen, P. J. & A. J. Calado, 1999. Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J. Eukaryot. Microbiol. 46: 382-389.
Hansen, P. J., P. K. Bjornsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2000-µm body size range. Limnol. Oceanogr. 42: 687-704.
Harvey, H.W., L. H. N. Cooper, M. V. Lebour & F. S. Russell, 1935. Plankton production and its control. J. mar. biol. Ass. U.K. 20: 407-441.
Hay, M. E. & W. Fenical, 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst. 19: 111-145.
Hutson, V., 1984. Predator mediated coexistence with a switching predator. Math. Biosci. 68: 233-246.
Jacobson, D. M. & D. M. Anderson, 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32: 279-285.
Jakobsen, H. H. & P. J. Hansen, 1997. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum — a comparative study. Mar. Ecol. Prog. Ser. 158: 75-86.
Jeong, H. J. & M. I. Latz, 1994. Growth and grazing rates of the heterotrophic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106: 173-185.
Jeong, H. J., J. H. Shim, J. S. Kim, J. Y. Park, C. W. Lee & Y. Lee, 1999a. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser. 176: 263-277.
Jeong, H. J., J. H. Shim, C. W. Lee, J. S. Kim & S. M. Koh, 1999b. Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates. J. Euk. Microbiol. 46: 69-76.
Johannes, R. E., 1964. Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146: 923-924.
Jonasdottir, S. H. and others 1998. Role of diatoms in copepod egg production: good, harmless or toxic? Mar. Ecol. Prog. Ser. 172: 305-308.
Jones, R. I., 1994. Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar. Microbial Food Webs 8: 87-96.
Jonsson, P. R. & P. Tiselius, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35-44.
Jürgens, K. & W. R. DeMott, 1995. Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol. Oceanogr. 40: 1503-1507.
Kamiyama, T., 1997. Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Mar. Biol. 128: 509-515.
Keller, M. D., 1988/1989. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanogr. 6: 375-382.
Keller, M. D., W. K. Bellows & R. R. L. Guillard, 1989. Dimethyl sulfide production in marine phytoplankton. In Saltzman, E. S. & W. J. Cooper (eds), Biogenic Sulfur in the Environment. American Chemical Society, Washington, DC: 167-183.
Kuhlmann, H.-W., J. Kusch & K. Heckmann, 1999. Predatorinduced defenses in ciliated protozoa. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton: 142-159.
Lam, R. K. & B. W. Frost, 1976. Model of copepod filtering response to changes in size and concentration of food. Limnol. Oceanogr. 21: 490-500.
Landry, M. R., 1994. Methods and controls for measuring the grazing impact of planktonic protists. Mar. Microb. Food Webs 8: 37-57.
Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283-288.
Landry, M. R. and others 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42: 405-418.
Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201: 57-72.
Liu, H. & E. J. Buskey, 2000. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa. Limnol. Oceanogr. 45: 1187-1191.
Longhurst, A., 1998. Ecological Geography of the Sea. Academic, San Diego: 398 pp.
Loukos, H., B. Frost, D. E. Harrison & J. W. Murray, 1997. An ecosystem model with iron limitation of primary produciton in the equatorial Pacific at 140∘ W. Deep-Sea Res. II 44: 2221-2249.
Mann, E. L. & S. W. Chisholm, 2000. Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol. Oceanogr. 45: 1067-1076.
Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta. 1: 493-509.
May, R. M., 1977. Predators that switch. Nature 269: 103-104.
May, R. M., 2001. Stability and Complexity in Model Ecosystems, 3rd edn. Princeton University Press, Princeton: 265 pp.
McManus, G. B. & M. C. Ederington-Cantrell, 1992. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Mar. Ecol. Prog. Ser. 87: 77-85.
Miller, C. B., 1993. Pelagic production processes in the Subarctic Pacific. Prog. Oceanog. 32: 1-15.
Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer & T. M. Powell, 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600-1615.
Miyake, A., T. Harumoto, B. Salvi & V. Rivola, 1990. Defensive function of pigment granules in Blepharisma japonicum. J. Eur. Protistol. 25: 310-315.
Monger, B. C., M. R. Landry & S. L. Brown, 1999. Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol. Oceanogr. 44: 1917-1927.
Montagnes, D. J. S., 1996. Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254.
Murdoch, W.W., 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39: 335-354.
Neuer, S. & T. J. Cowles, 1994. Protist herbivory in the Oregon upwelling system. Mar. Ecol. Prog. Ser. 113: 147-162.
Oaten, A. & W.W. Murdoch, 1975. Switching, functional response, and stability in predator—prey systems. Am. Nat. 109: 299-318.
Paffenhöfer, G.-A., 1998. Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. J. Plankton Res. 20: 121-133.
Pfiester, L. A. & D. M. Anderson, 1987. Dinoflagellate reproduction. In Taylor, F. J. R. (ed.), The Biology of Dinoflagellates. Blackwell Scientific, Oxford: 611-648.
Pimm, S. L., 1984. The complexity and stability of ecosystems. Nature 307: 321-326.
Pitchford, J. W. & J. Brindley, 1999. Iron limitation, grazing pressure and oceanic high nutrient—low chlorophyll (HNLC) regions. J. Plankton Res. 21: 525-547.
Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. Bioscience 24: 499-504.
Reid, P. C., 1987. Mass encystment of a planktonic oligotrich ciliate. Mar. Biol. 95: 221-230.
Riemann, B., H. Havskum, F. Thingstad & C. Bernard, 1995. The role of mixotrophy in pelagic environments. NATOASI Ser. Mol. Ecol. Aquat. Microbes 38: 89-114.
Riley, G. A., 1946. Factors controlling phytoplankton populations on Georges Bank. J. mar. Res. 6: 54-73.
Royall, J. A. & H. Ischirpoulos, 1993. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348-355.
Sherr, E. B. & B. F. Sherr, Submitted. Significance of predation by protists in aquatic microbial food webs. Antonie van Leewenhoek ISME-9 Symposium Vol.
Sibbald, M. J., L. J. Albright & P. R. Sibbald, 1987. Chemosensory responses of a heterotrophic microflagellate to bacteria and several nitrogen compounds. Mar. Ecol. Prog. Ser. 36: 201-204.
Skovgaard, A., 1998. Role of chloroplast retention in a marine dinoflagellate. Aquat. Microb. Ecol. 15: 293-301.
Smayda, T. J., 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42: 1137-1153.
Spencer, K. C. (ed.), 1988. Chemical Mediation of Coevolution. Academic, San Diego: 609 pp.
Spero, H. J., 1985. Chemosensory capabilities in the phagotrophic dinoflagellate Gymnodinium fungiforme. J. Phycol. 21: 181-184.
Steele, J. H. & B. W. Frost, 1977. The structure of plankton communities. Phil. Trans. r. Soc. (B) 280: 485-534.
Steele, J. H. & E. W. Henderson, 1992. The role of predation in plankton models. J. Plankton Res. 14: 157-172.
Steinke, M., G. V. Wolfe & G. O. Kirst, 1998. Partial characterization of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 175: 215-225.
Stephens, D. W. & J. R. Krebs, 1986. Foraging Theory. Princeton Univ., Princeton: 247 pp.
Sterner, R.W. & R. F. Smith, 1993. Clearance, ingestion and release of N and P by Daphnia pulex feeding on Scenedesmus acutus of varying quality. Bull. mar. Sci. 53: 228-239.
Stoecker, D. K. & J. M. Capuzzo, 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891-908.
Stoecker, D. K. & G. T. Evans, 1985. Effects of protozoan herbivory and carnivory in a microplankton food web. Mar. Ecol. Prog. Ser. 25: 159-167.
Stoecker, D. K., T. L. Cucci, E. M. Hulburt & C. M. Yentsch, 1986. Selective feeding by Balanion sp. (Ciliata: Balanionidae) on phytoplankton that best support its growth. J. exp. mar. Biol. Ecol. 95: 113-130.
Stoecker, D. K., S. M. Gallager, C. J. Langdon & L. H. Davis, 1995. Particle capture by Favella sp. (Ciliata, Tintinnina). J. Plankton Res. 17: 1105-1124.
Strom, S. L., 2001. Light-aided digestion, grazing and growth in herbivorous protists. Aquat. Microb. Ecol. 23: 253-261.
Strom, S. L. & E. J. Buskey, 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38: 965-977.
Strom, S. L. & T. A. Morello, 1998. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J. Plankton Res. 20: 571-584.
Strom, S. L. & N. A. Welschmeyer, 1991. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnol. Oceanogr. 36: 50-63.
Strom, S. L., C. B. Miller & B. F. Frost, 2000. What sets the lower limits to phytoplankton biomass in high nitrate, low chlorophyll ocean regions? Mar. Ecol. Prog. Ser. 193: 19-31.
Strom, S. L., G. V. Wolfe & A. Slajer, 2001. Phytoplankton DMSP release: a possible chemical defense against protist grazers? Abstract, American Society of Limnology and Oceanography, Albuquerque.
Strom, S. L., G. V. Wolfe, J. Holmes, H. A. Stecher, S. Lambert & E. Moreno, submitted-a. Chemical defense in the microplankton I: feeding and growth of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr.
Strom, S. L., G. V. Wolfe, S. Lambert & J. Clough, submittedb. Chemical defense in the microplankton II: DMSP inhibits feeding in four heterotrophic protists. Limnol. Oceanogr.
Taniguchi, A. & Y. Takeda, 1988. Feeding rate and behavior of the tintinnid ciliate Favella taraikaensis, observed with a high speed VTR system. Mar. Microb. Food Webs 3: 21-34.
Tarran, G. A., 1991. Aspects of the feeding behaviour of the marine dinoflagellate Oxyrrhis marina Dujardin. Ph.D. thesis, Southampton Univ.
Taylor, F. J. R., 1987. Dinoflagellate morphology. In Taylor, F. J. R. (ed.), The Biology of Dinoflagellates. Blackwell Scientific, Oxford: 24-91.
Tollrian, R. & C. D. Harvell (eds), 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton: 383 pp.
Tranvik, L. J., E. B. Sherr & B. F. Sherr, 1993. Uptake and utilization of ‘colloidal DOM’ by heterotrophic flagellates in seawater. Mar. Ecol. Prog. Ser. 92: 301-309.
Turner, J. T. & P. A. Tester, 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr. 42: 1203-1214.
Van Donk, E., M. Lurling & W. Lampert, 1999. Consumer-induced changes in phytoplankton: inducibility, costs, benefits, and the impact on grazers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton: 89-103.
Venrick, E. L., J. A. McGowan, D. R. Cayan & T. L. Hayward, 1987. Climate and chlorophyll a: long-term trends in the central North Pacific ocean. Science 238: 70-72.
Verity, P. G., 1986. Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126.
Verity, P. G., 1991. Feeding in planktonic protozoans: evidence for non-random acquisition of prey. J. Protozool. 38: 69-76.
Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277-293.
Verity, P. G. & T. A. Villareal, 1986. The relative food value of diatoms, dinoflagellates, flagellates, and cyanobacteria for tintinnid ciliates. Arch. Protistenkd. 131: 71-84.
Verity, P. G., D. K. Stoecker, M. E. Sieracki & J. R. Nelson, 1993. Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47∘ N, 18∘ W. Deep-Sea Res. 40: 1793-1814.
Verity, P. G., D. K. Stoecker, M. E. Sieracki & J. R. Nelson, 1996. Microzooplankton grazing of primary production at 140∘ W in the equatorial Pacific. Deep-Sea Res. II 43: 1227-1256.
Walsh, J. J., 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol. Oceanogr. 21: 1-13.
Washburn, J. O., M. E. Gross, D. R. Mercer & J. R. Anderson, 1988. Predator-induced trophic shift of a free-living ciliate: parasitism of mosquito larvae by their prey. Science 240: 1193-1195.
Weisse, T. & U. Scheffel-Möser, 1991. Uncoupling the microbial loop: growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic. Mar. Ecol. Prog. Ser. 71: 195-205.
Wetherbee, R. & R. A. Andersen, 1992. Flagella of a chrysophycean alga play an active role in prey capture and selection. Protoplasma 166: 1-7.
Wicklow, B. J., 1997. Signal-induced defensive phenotypic changes in ciliated protists: morphological and ecological implications for predator and prey. J. Euk. Microbiol. 44: 176-188.
Wikner, J. & Å. Hagström, 1988. Evidence for a tightly coupled nanoplanktonic predator—prey link regulating the bacterivores in the marine environment. Mar. Ecol. Prog. Ser. 50: 137-145.
Wolfe, G. V., 2000. The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impactsq. Biol. Bull. 198: 225-244.
Wolfe, G. V. & M. Steinke, 1996. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41: 1151-1160.
Wolfe, G. V., S. L. Strom, J. L. Holmes, T. Radzio & M. B. Olson, In press. In vivo DMSP cleavage by marine phytoplankton in response to physical, chemical, or dark stress. J. Phycol.
Zirbel, M. J. & S. L. Strom, 2001. Light-enhanced digestion by microzooplankton. Abstract, American Society of Limnology and Oceanography, Albuquerque.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Strom, S. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 480, 41–54 (2002). https://doi.org/10.1023/A:1021224832646
Issue Date:
DOI: https://doi.org/10.1023/A:1021224832646