Genetica

, Volume 116, Issue 2–3, pp 205–214

Sexual Signaling and Speciation, a Microevolutionary Perspective

  • Christine R.B. Boake
Article

Abstract

Despite the growing evidence that sexual selection can drive speciation, the evolution of sexual signals in natural populations is far from being well-understood. Sexual signals evolve in response to a variety of factors. Some of the most important selective factors are conspecifics, transmission efficiency in a particular environment, detection by predators, and phylogenetic constraints. These factors have been addressed quite successfully in studies of single types of signals in both vertebrates and invertebrates. However, it is less clear how multimodal signals evolve because the factors listed above will act on every component of the signaling system, and the relative weights of each type of signal must be taken into account. Species of Drosophila are excellent for such analyses because they are amenable to both phenotypic experimentation and genetic manipulation. This paper presents an approach that involves two analyses: studies of which signals are sexually selected within a species, and parallel studies of the signals that are involved in behavioral isolation between closely related species. If the same signal characteristics are involved in both processes, they would provide support for the hypothesis that sexual selection can drive speciation. This approach is illustrated with studies of Hawaiian Drosophila and a review of signals that could be sexually selected in Drosophila melanogaster.

acoustic signals behavioral isolation communication Drosophila pheromones sexual selection speciation visual signals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahearn, J.N. & A.R. Templeton, 1989. Interspecific hybrids of Drosophila heteroneura and D. silvestris. I. Courtship success. Evolution 43: 347–361.Google Scholar
  2. Alexander, R.D., 1962. Evolutionary change in cricket acoustical communication. Evolution 16: 443–467.Google Scholar
  3. Alipaz, J.A., C.-I. Wu & T.L. Karr, 2001. Gametic incompatibilities between races of Drosophila melanogaster. Proc. R. Soc. Lond. B. 268: 789–795.Google Scholar
  4. Andersson, M., 1994. Sexual Selection. Princeton University Press, Princeton, NJ.Google Scholar
  5. Ashburner, M., 1989. Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  6. Basolo, A.L., 1990. Female preference predates the evolution of the sword in swordtail fish. Science 250: 808–810.Google Scholar
  7. Bateman, A.J., 1948. Intra-sexual selection in Drosophila. Heredity 2: 349–368.Google Scholar
  8. Begun, D.J. & C.F. Aquadro, 1993. African and North-American populations of Drosophila-melanogaster are very different at the DNA level. Nature 365: 548–550.Google Scholar
  9. Boake, C.R.B., 2000. Flying apart: mating behavior and speciation. BioScience 50: 501–508.Google Scholar
  10. Boake, C.R.B. & A. Hoikkala, 1995. Courtship behaviour and mating success of wild-caught Drosophila silvestris males. Anim. Behav. 49: 1303–1313.Google Scholar
  11. Boake, C.R.B., M.P. DeAngelis & D.K. Andreadis, 1997. Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed fly Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 94: 12442–12445.Google Scholar
  12. Boake, C.R.B., D.K. Andreadis & A. Witzel, 2000. Behavioural isolation between two closely related Hawaiian Drosophila species: the role of courtship. Anim. Behav. 60: 495–501.Google Scholar
  13. Bradbury, J.W. & S.L. Vehrencamp, 1998. Principles of Animal Communication. Sinauer, Sunderland, MA.Google Scholar
  14. Caccone, A., E.N. Moriyama, J.M. Gleason, L. Nigro & J.R. Powell, 1996. A molecular phylogeny for the Drosophila melanogaster subgroup and the problem of polymorphism data. Mol. Biol. Evol. 13: 1224–1232.Google Scholar
  15. Capy, P., M. Veuille, M. Paillette, J.-M. Jallon, J. Vouidibio & J.R. David, 2000. Sexual isolation of geneticially differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first step towards speciation? Heredity 84: 468–475.Google Scholar
  16. Carracedo, M.C., R. Pineiro & P. Casares, 1995. Chromosomal substitution analysis of receptivity and sexual isolation in Drosophila melanogaster females. Heredity 75: 541–546.Google Scholar
  17. Carson, H.L., 1982. Evolution of Drosophila on the newer Hawaiian volcanoes. Heredity 48: 3–25.Google Scholar
  18. Carson, H.L., K.Y. Kaneshiro & F.C. Val, 1989. Natural hybridization between the sympatric Hawaiian species Drosophila silvestris and Drosophila heteroneura. Evolution 43: 190–203.Google Scholar
  19. Cobb, M. & J.-F. Ferveur, 1996. Evolution and genetic control of mate recognition and stimulation in Drosophila. Behav. Proc. 35: 35–54.Google Scholar
  20. Cobb, M. & J.-M. Jallon, 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39: 1058–1067.Google Scholar
  21. Colegrave, N., H. Hollocher, K. Hinton & M.G. Ritchie, 2000. The courtship song of African Drosophila melanogaster. J.Evol. Biol. 13: 143–150.Google Scholar
  22. Connolly, K., B. Burnet, M. Kearney & L. Eastwood, 1974. Mating speed and courtship behaviour of inbred strains of Drosophila melanogaster. Behaviour 48: 61–74.Google Scholar
  23. Coyne, J.A., 1996. Genetics of sexual isolation in male hybrids of Drosophila simulans and D. mauritiana. Genet. Res. Camb. 68: 211–220.Google Scholar
  24. Coyne, J.A. & H.A. Orr, 1989. Patterns of speciation in Drosophila. Evolution 43: 362–381.Google Scholar
  25. Coyne, J.A. & H.A. Orr, 1997. “Patterns of speciation in Drosophila” revisited. Evolution 51: 295–303.Google Scholar
  26. Coyne, J.A., A.P. Crittenden & K. Mah, 1994. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265: 1461–1464.Google Scholar
  27. Coyne, J.A., C. Wicker-Thomas & J.-M. Jallon, 1999. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genet. Res. Camb. 73: 189–203.Google Scholar
  28. Craddock, E.M., 1974. Reproductive relationships between homosequential species of Hawaiian Drosophila. Evolution 28: 593–606.Google Scholar
  29. Endler, J.A., 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139: S125–S153.Google Scholar
  30. Enquist, M. & A. Arak, 1993. Selection of exaggerated male traits by female aesthetic senses. Nature 361: 446–448.Google Scholar
  31. Ewing, A.W., 1964. The influence of wing area on the courtship behaviour of Drosophila melanogaster. Anim. Behav. 12: 316–320.Google Scholar
  32. Faugères, A., C. Petit & E. Thibout, 1971. The components of sexual selection. Evolution 25: 265–275.Google Scholar
  33. Ferveur, J.-F., 1997. The pheromonal role of cuticular hydrocarbons in Drosophila melanogaster. BioEssays 19: 353–358.Google Scholar
  34. Ferveur, J.-F.& J.-M. Jallon, 1996. Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genet. Res. Camb. 67: 211–218.Google Scholar
  35. Fisher, R.A., 1958. The Genetical Theory of Natural Selection. Dover, New York.Google Scholar
  36. Gavrilets, S. & C.R.B. Boake, 1998. On the evolution of premating isolation after a founder event. Am. Nat. 152: 706–716.Google Scholar
  37. Grossfield, J., 1971. Geographic distribution and light-dependent behavior in Drosophila. Proc. Natl. Acad. Sci. USA 68: 2669–2673.Google Scholar
  38. Higashi, M., G. Takimoto & N. Yamamura, 1999. Sympatric speciation by sexual selection. Nature 402: 523–526.Google Scholar
  39. Hoenigsberg, H.F. & S. Koref-Santibanez, 1960. Courtship and sensory preferences in inbred lines of Drosophila melanogaster. Evolution 14: 1–7.Google Scholar
  40. Hoikkala, A. & K. Kaneshiro, 1993. Change in the signal-response sequence responsible for asymmetric isolation between Drosophila planitibia and Drosophila silvestris. Proc. Natl. Acad. Sci. USA 90: 5813–5817.Google Scholar
  41. Hoikkala, A. & P. Welbergen, 1995. Signals and responses of females and males in successful and unsuccessful courtships of three Hawaiian lek-mating Drosophila species. Anim. Behav. 50: 177–190.Google Scholar
  42. Iwasa, Y. & A. Pomiankowski, 1995. Continual change in mate preferences. Nature 377: 420–423.Google Scholar
  43. Jallon, J.-M., 1984. A few chemical words exchanged by Drosophila during courtship. Behav. Genet. 14: 441–478.Google Scholar
  44. Kidwell, M.G., 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 1655–1659.Google Scholar
  45. Kirkpatrick, M. & M.R. Servedio, 1999. The reinforcement of mating preferences on an island. Genetics 151: 865–884.Google Scholar
  46. Kliman, R.M., P. Andolfatto, J.A. Coyne, F. Depaulis, M. Kreitman, A.J. Berry, J. McCarter, J. Wakeley & J. Hey, 2000. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.Google Scholar
  47. Konishi, M., 1970. Evolution of design features in the coding of species-specificity. Am. Zool. 10: 67–72.Google Scholar
  48. Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin & E. Nevo, 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at “Evolution Canyon”. Proc. Natl. Acad. Sci., USA 97: 12637–12642.Google Scholar
  49. Kyriacou, C.P. & J.C. Hall, 1982. The function of courtship song rhythms in Drosophila. Anim. Behav. 30: 794–801.Google Scholar
  50. Lachaise, D., J.R. David, F. Lemeunier & L. Tsacas, 1986. The reproductive relationships of Drosophila sechellia with D. mauritiana, D. simulans, and D. melanogaster from the Afrotropical region. Evolution 40: 262–271.Google Scholar
  51. Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.Google Scholar
  52. Lande, R. & M. Kirkpatrick, 1988. Ecological speciation by sexual selection. J. Theor. Biol. 133: 85–98.Google Scholar
  53. Letsinger, J.T. & M.H. Gromko, 1985. The role of sperm numbers in sperm competition and female remating in Drosophila melanogaster. Genetica 66: 195–202.Google Scholar
  54. Markow, T.A., 1987. Behavioral and sensory basis of courtship success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 84: 6200–6204.Google Scholar
  55. Markow, T.A., 2000. Forced matings in natural populations of Drosophila. Am. Nat. 156: 100–103.Google Scholar
  56. Markow, T.A. & S.J. Hansen, 1981. Multivariate analysis of Drosophila courtship. Proc. Natl. Acad. Sci. USA 78: 430–434.Google Scholar
  57. Otte, D., 1977. Communication in Orthoptera, pp. 334–361 in How Animals Communicate, edited by T.A. Sebeok. Indiana University Press, Bloomington, IN.Google Scholar
  58. Panhuis, T.M., R. Butlin, M. Zuk & T. Tregenza, 2001. Sexual selection and speciation. Trends Ecol. Evol. 16: 364–371.Google Scholar
  59. Payne, R.J.H. & D.C. Krakauer, 1997. Sexual selection, space, and speciation. Evolution 51: 1–9.Google Scholar
  60. Pechiné, J.M., C. Antony & J.-M. Jallon, 1988. Precise characterization of cuticular compounds in young Drosophila by mass spectrometry. J. Chem. Ecol. 14: 1071–1085.Google Scholar
  61. Price, D.K. & C.R.B. Boake, 1995. Behavioral reproductive isolation in Drosophila silvestris, D. heteroneura, and their F1 hybrids (Diptera: Drosophilidae). J. Insect Behav. 8: 595–616.Google Scholar
  62. Rice, W.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: What have we learned in 40 years? Evolution 47: 1637–1653.Google Scholar
  63. Ritchie, M.G., V.H. Yate & C.P. Kyriacou, 1994. Genetic variability of the interpulse interval of courtship song among some European populations of Drosophila melanogaster. Heredity 72: 459–464.Google Scholar
  64. Ryan, M.J., 1990. Sexual selection, sensory systems and sensory exploitation, pp. 157–195 in Oxford Surveys in Evolutionary Biology, edited by D. Futuyma & J. Antonovics. Oxford University Press, Oxford.Google Scholar
  65. Savarit, F., G. Sureau, M. Cobb & J.-F. Ferveur, 1999. Genetic elimination of pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc. Natl. Acad. Sci. USA 96: 9015–9020.Google Scholar
  66. Scott, D., 1994. Genetic variation for female mate discrimination in Drosophila melanogaster. Evolution 48: 112–121.Google Scholar
  67. Singh, R.S. & A.D. Long, 1992. Geographic variation in Drosophila: from molecules to morphology and back. Trends Ecol. Evol. 7: 340–345.Google Scholar
  68. Spieth, H.T., 1978. Courtship patterns and evolution of the Drosophila adiastola and planitibia species subgroups. Evolution 32: 435–451.Google Scholar
  69. Takahashi, A., S.-C. Tsaur, J.A. Coyne & C.-I. Wu, 2001. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 3920–3925.Google Scholar
  70. Templeton, A.R., 1977. Analysis of head shape differences betwen two interfertile species of Hawaiian Drosophila. Evolution 31: 530–541.Google Scholar
  71. Tomaru, M., M. Doi, H. Higuchi & Y. Oguma, 2000. Courtship song recognition in the Drosophila melanogaster complex: heterospecific songs make females receptive in D. melanogaster, but not in D. sechellia. Evolution 54: 1286–1294.Google Scholar
  72. Tregenza, T. & N. Wedell, 1997. Definitive evidence for cuticular pheromones in a cricket. Anim. Behav. 54: 979–984.Google Scholar
  73. Turner, G.F. & M.T. Burrows, 1995. A model of sympatric speciation by sexual selection. Proc. R. Soc. Lond. B 260: 287–292.Google Scholar
  74. Tyack, P.L., 1998. Acoustic communication under the sea, pp. 163–220 in Animal Acoustic Communication: Sound Analysis and Research Methods, edited by S.L. Hopp, M.J. Owren & C.S. Evans. Springer-Verlag, New York.Google Scholar
  75. Val, F.C., 1977. Genetic analysis of the morphological differences between two interfertile species of Hawaiian Drosophila. Evolution 31: 611–629.Google Scholar
  76. Vouidibio, J., P. Capy, D. Defaye, E. Pla, J. Sandrin, A. Csink & J.R. David, 1989. Short-range genetic structure of Drosophila melanogaster populations in an Afrotropical urban area and its significance. Proc. Natl. Acad. Sci. USA. 86: 8442–8446.Google Scholar
  77. Wade, M.J. & S.J. Arnold, 1980. The intensity of sexual selection in relation to male sexual behaviour, female choice, and sperm precedence. Anim. Behav. 28: 446–461.Google Scholar
  78. Watanabe, T.K., W.H. Lee, Y. Inoue & M. Kawanishi, 1977. Genetic variation of the hybrid crossability between Drosophila melanogaster and D. simulans. Jpn. J. Genet. 52: 1–8.Google Scholar
  79. Wilkinson, G.S., 1987. Equilibrium analysis of sexual selection in Drosophila melanogaster. Evolution 41: 11–21.Google Scholar
  80. Wolfner, M.F., 1997. Tokens of love: functions and regulation of Drosophila male accessory gland products. Insect Biochem. Mol. Biol. 27: 179–192.Google Scholar
  81. Wu, C.-I., 1985. A stochastic simulation study on speciation by sexual selection. Evolution 39: 66–82.Google Scholar
  82. Wu, C.-I., H. Hollocher, D.J. Begun, C.F. Aquadro, Y. Xu & M.-L. Wu, 1995. Sexual isolation in Drosophila melanogaster: A possible case of incipient speciation. Proc. Natl. Acad. Sci. USA 92: 2519–2523.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Christine R.B. Boake
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations