Skip to main content
Log in

A Cartan–Hadamard Theorem for Banach–Finsler Manifolds

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we study Banach–Finsler manifolds endowed with a spray which have seminegative curvature in the sense that the corresponding exponential function has a surjective expansive differential in every point. In this context we generalize the classical theorem of Cartan–Hadamard, saying that the exponential function is a covering map. We apply this to symmetric spaces and thus obtain criteria for Banach–Lie groups with an involution to have a polar decomposition. Typical examples of symmetric Finsler manifolds with seminegative curvature are bounded symmetric domains and symmetric cones endowed with their natural Finsler structure which in general is not Riemannian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AB90] Alexander, S. B. and Bishop, R. L.: The Hadamard-Cartan theorem in locally convex metric spaces, Enseign. Math. 36 (1990), 309–320.

    Google Scholar 

  • [Au55] Auslander, L.: On curvature in Finsler geometry, Trans. Amer. Math. Soc. 79 (1955), 378–388.

    Google Scholar 

  • [BCS00] Bao, D., Chen, S.-S. and Shen, Z.: An Introduction to Riemann-Finsler Geometry, Grad. Texts in Math. 200, Springer, New York, 2000.

    Google Scholar 

  • [BP80] Berkson, E., and Porta, H.: The group of isometries on Hardy spaces of the n-ball and the polydisc, Glasgow Math. J. 21 (1980), 199–204.

    Google Scholar 

  • [Bou90] Bourbaki, N.: Groupes et alge´bres de Lie, chapitres 2 et 3, Masson, Paris, 1990.

    Google Scholar 

  • [BH99] Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., Springer, Berlin, 1999.

    Google Scholar 

  • [Ca63] Cartan, E.: Lec¸ ons sur la géométrie des espaces de Riemann, 2nd edn, Gauthier-Villars, Paris, 1963.

    Google Scholar 

  • [CPR92] Corach, G., Porta, H. and Recht, L.: A geometric interpretation of Segal's inequality ‖eX+Y‖⩽‖eX/2eYeX/2Proc. Amer. Math. Soc. 115(1) (1992), 229–231.

    Google Scholar 

  • [CPR93] Corach, G., Porta, H. and Recht, L.: Geodesics and operator means in the space of positive operators, Internat. J. Math. 4(2) (1993), 193–202.

    Google Scholar 

  • [CPR94] Corach, G., Porta, H. and Recht, L.: Convexity of the geodesics distance on spaces of positive operators, Illinois J. Math. 38:(1) (1994), 87–94.

    Google Scholar 

  • [CGM90] Cuenca Mira, J. A., Garcia Martin, A. and Martin Gonzalez, C.: Structure theory of L*-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 361–365.

    Google Scholar 

  • [Ee66] Eells, J.: A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807.

    Google Scholar 

  • [El67] Eliasson, H.: Geometry of manifolds of maps, J. Differential Geom. 1 (1967), 169–194.

    Google Scholar 

  • [FK94] Faraut, J. and Koranyi, A.: Analysis on Symmetric Cones, Oxford Math. Monogr., Oxford University Press, 1994.

  • [FR86] Friedman, Y. and Russo, B.: The Gelfand-Neimark theorem for JB*-triples, Duke Math. J. 53 (1986), 139–148.

    Google Scholar 

  • [Gl99] Glückner, H.: Infinite-dimensional complex groups and semigroups: representations of cones, tubes and conelike semigroups, Dissertation, University of Technology, Darmstadt, 1999.

    Google Scholar 

  • [GN01] Glückner, H. and Neeb, K.-H. Banach-Lie quotients, enlargibility, and Universal complexifications, J. Reine Angew. Math., to appear.

  • [Gr65] Grossman, N.: Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc. 16 (1965), 1365–1371.

    Google Scholar 

  • [Ha96] Hadamard, J.: Les surfaces à courbures opposées et leur lignes géodesiques, J. Math. Pures Appl. (5) 4 (1896), 27–73.

  • [Ha67] Halmos, P. R.: A Hilbert Space Problem Book, Grad. Texts in Math. 19, Springer, New York, 1967.

    Google Scholar 

  • [dlH72] de la Harpe, P.: Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, Berlin, 1972.

    Google Scholar 

  • [dlH82] de la Harpe, P.: Classical groups and classical Lie algebras of operators, Proc. Sympos. Pure Math. 38(1) (1982), 477–513.

    Google Scholar 

  • [Hel78] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, London, 1978.

    Google Scholar 

  • [HHL89] Hilgert, J., Hofmann, K. H. and Lawson, J. D.: Lie Groups, Convex Cones, and Semigroups, Oxford Univ. Press, 1989.

  • [HO96] Hilgert, J. and Ólafsson, G.: Causal Symmetric Spaces, Geometry and Harmonic Analysis, Academic Press, New York, 1996.

    Google Scholar 

  • [Ka83] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529.

    Google Scholar 

  • [KM97] Kriegl, A. and Michor, P. The Convenient Setting for Global Analysis, Math. Surveys Monogr. 53, Amer. Math. Soc., Providence, 1997.

    Google Scholar 

  • [KN96] Krütz, B. and Neeb, K.-H.: On hyperbolic cones and mixed symmetric spaces, J. Lie Theory 6(1) (1996), 69–146.

    Google Scholar 

  • [La99] Lang, S.: Fundamentals of Differential Geometry, Grad. Texts in Math. 191, Springer, New York, 1999.

    Google Scholar 

  • [Lim99a] Lim, Y.: Applications of geometric means on symmetric cones, submitted.

  • [Lim99b] Lim, Y.: Geometric means on symmetric cones, Arch. Math., to appear.

  • [Lim99c] Lim, Y.: Finsler metrics on symmetric cones, Math. Ann., to appear.

  • [Lo69] Loos, O.: Symmetric Spaces I:General Theory, Benjamin, New York, 1969.

    Google Scholar 

  • [Ma62] Maissen, B.: Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229–269.

    Google Scholar 

  • [McA65] McAlpin, J.: Infinite dimensional manifolds and morse theory, Thesis, Columbia University, 1965.

  • [Ne99a] Neeb, K.-H.: Holomorphy and Convexity in Lie Theory, Expos. Math. 28, de Gruyter-Verlag, Berlin, 1999.

    Google Scholar 

  • [Ne99b] Neeb, K.-H.: On the complex geometry of invariant domains in complexified symmetric spaces, Ann. Inst. Fourier 49(1) (1999), 177–225.

    Google Scholar 

  • [Ne00a] Neeb, K.-H.: Infinite-dimensional Lie groups and their representations, Lectures at the European School in Group Theory, SDU-Odense Univ., August 2000 (available as Preprint), to appear in Progr. in Math., Birkhäuser-Verlag, Basel.

    Google Scholar 

  • [Ne00b] Neeb, K.-H.: Compressions of infinite-dimensional bounded symmetric domains, Semigroup Forum, to appear.

  • [Ne01a] Neeb, K.-H.: Geometry and structure of L*-groups, in preparation.

  • [Ne01b] Neeb, K.-H.: Classical Hilbert-Lie groups, their extensions and their homotopy groups, In: Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, A. Strasburger et al. (eds), Banach Center Publications 55 (2002), 87–151.

  • [Neh93] Neher, E.: Generators and relations for 3-graded Lie algebras, J. Algebra 155 (1993), 1–35.

    Google Scholar 

  • [Paz83] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.

    Google Scholar 

  • [PS86] Pressley, A. and Segal, G. Loop Groups, Oxford Univ. Press, Oxford, 1986.

    Google Scholar 

  • [PW52] Putnam, C. R. and Winter, A.: The orthogonal group in Hilbert space, Amer. J. Math. 74 (1952), 52–78.

    Google Scholar 

  • [RS78] Reed, S. and Simon, B. Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  • [Re95] Remmert, R.: Funktionentheorie II, Springer Lehrbuch, Springer, Berlin, 1995.

    Google Scholar 

  • [Ru73] Rudin, W.: Functional Analysis, McGraw Hill, New York, 1973.

    Google Scholar 

  • [Ru86] Rudin, W.: Real and Complex Analysis, McGraw Hill, New York, 1986.

    Google Scholar 

  • [St99] Stumme, N.: The structure of locally finite split Lie algebras, PhD thesis, Darmstadt University of Technology, 1999.

  • [Th71] Thompson, C. J.: Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J. 21 (1971), 469–480.

    Google Scholar 

  • [Up85] Upmeier, H.: Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.

    Google Scholar 

  • [Ve79] Vesentini, E.: Variations on a theme of Carathéodory, Ann. Sculoa Norm. Sup. Pisa 7(4) (1979), 39–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neeb, KH. A Cartan–Hadamard Theorem for Banach–Finsler Manifolds. Geometriae Dedicata 95, 115–156 (2002). https://doi.org/10.1023/A:1021221029301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021221029301

Navigation