Skip to main content
Log in

Steemann Nielsen and the zooplankton

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

E. Steemann Nielsen is remembered by most biological oceanographers and limnologists as having introduced the 14C method for measuring photosynthesis in 1952. The present paper is to recall that he was interested in the phytoplankton as part of the plankton community and was much aware of the role of grazing in affecting, if not determining, the concentrations of phytoplankton and, thus, also its rate of production. His principal statements to this effect were made with the open, oligotrophic subtropical and tropical oceans in mind where phytoplankton concentrations exhibit little seasonal change. This paper shows that Steemann Nielsen's sentiment also applies to non-static situations, especially phytoplankton blooms. Of the blooms in Cushing's North Sea Calanus patches of 1949 and 1954 and the two low-latitude, open-sea iron fertilization experiments (IronEx I, II) of the 1990s, more than half or even most of the newly formed cells were lost daily. In these examples, the same water was revisited, mixing was considered, and sinking was an unimportant loss term, so that grazing was the principal cause of mortality. Because of the grazing losses and the subsequent regeneration the CO2 draw down in the fertilized water was much lower than the 14C uptake. Moreover the examples show that over the course of the blooms, the rate and even the sign of temporal change of phytoplankton abundance had little relation to the rate of cell division, as already postulated by Riley's 1946 model of the seasonal cycle of phytoplankton on Georges Bank. Thus, in most situations in the open sea and, presumably, large lakes, the rates of cell division (instead of photosynthesis by itself) and of mortality (most often from grazing) are needed for understanding and predicting the temporal change of phytoplankton abundance, a principal goal of biological oceanography. The mechanism maintaining the actual abundance of phytoplankton in the quasi-steady state prevailing over most of the ocean much of the time is still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, F. A. J. & E. I. Butler, 1968. Chemical changes in sea water off Plymouth during the years 1962 to 1965. J. mar. biol. Ass. U.K 48: 153-160.

    Google Scholar 

  • Banse, K., 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Production and Biogeochemical Cycles in the Sea. Plenum Press, New York: 409-440.

    Google Scholar 

  • Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7: 13-20.

    Google Scholar 

  • Banse, K., 1995a. Community response to IRONEX. Nature 375: 112.

    Google Scholar 

  • Banse, K., 1995b. Zooplankton: pivotal role in the control of ocean production. ICES J. mar. Sci. 52: 265-277.

    Google Scholar 

  • Banse, K., 1996. Low seasonality of low concentrations of surface chlorophyll in the Subantarctic water ring: underwater irradiance, iron, or grazing? Prog. Oceanogr. 37: 241-291.

    Google Scholar 

  • Behrenfeld, M. J., A. J. Bale, Z. S. Kolber, J. Aiken & P. G. Falkowski, 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508-511.

    Google Scholar 

  • Buesseler, K. O., M. P. Bacon, J. K. Cochran & H. D. Livingston, 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th: 238U disequilibra. Deep-Sea Res. I 39: 1115-1137.

    Google Scholar 

  • Calbet, A. & M. R. Landry, 1999. Mesozooplankton influences on the microbial food web: Direct and indirect trophic interactions in the oligotrophic open ocean. Limnol. Oceanogr. 44: 1370-1380.

    Google Scholar 

  • Caron, D. A. & M. R. Dennett, 1999. Phytoplankton growth and mortality during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea. Deep-Sea Res. II 46: 1665-1690.

    Google Scholar 

  • Chan, A. T., 1980. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth, and carbon/ chlorophyll a ratio. J. Phycol. 16: 428-432.

    Google Scholar 

  • Coale, K. H. & 18 others, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495-501.

    Google Scholar 

  • Conover, S. A. M., 1956. Oceanography of Long Island Sound, 1952–1954. IV. Phytoplankton. Bull. Bingham Oceanogr. Coll. 15: 62-112.

    Google Scholar 

  • Cullen, J. J., 1995. Status of the iron hypothesis after the open-ocean experiment. Limnol. Oceanogr. 40: 1336-1343.

    Google Scholar 

  • Cushing, D. H., 1953. Studies on plankton populations. J. Cons. 19: 3-22.

    Google Scholar 

  • Cushing, D. H., 1955. Production and a pelagic fishery. Fish. Invest., Ser. II, 18 (7): 1-104.

    Google Scholar 

  • Cushing, D. H., 1959a. On the nature of production in the sea. Fish. Invest., Ser. II, 22 (6): 1-40.

    Google Scholar 

  • Cushing, D. H., 1959b. The seasonal variation in oceanic production as a problem in population dynamics. J. Cons. 24: 454-464.

    Google Scholar 

  • Cushing, D. H., 1963. Studies on a Calanus patch. V. The production cruises in 1954: summary and conclusions. J. mar. biol. Ass. U.K. 43: 387-389.

    Google Scholar 

  • Cushing, D. H., 1995. Population Production and Regulation in the Sea: a Fisheries Perspective. Cambridge University Press, Cambridge: 354 pp.

    Google Scholar 

  • Cushing, D. H. & T. Vucetic, 1963. Studies on a Calanus patch. III. The quantity of food eaten by Calanus finmarchicus. J. mar. biol. Ass. U.K. 43: 349-371.

    Google Scholar 

  • Ducklow, H. W & R. P. Harris, 1993. Introduction to the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II, 40: 1-8.

    Google Scholar 

  • Eberlein, K., G. Kattner, U. Brockmann & K. D. Hammer, 1980. Nitrogen and phosphorus in different water layers at the central station during FLEX '76. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 87-98.

    Google Scholar 

  • Falkowski, P. G. & Z. Kolber, 1993. Estimation of phytoplankton photosynthesis by active fluorescence. ICES mar. Sci. Symp. 197: 92-103.

    Google Scholar 

  • Fransz, H. G. & W. G. van Arkel, 1980. Zooplankton activity during and after the phytoplankton spring bloom at the central station in the FLEX box, northern North Sea, with special reference to the calanoid copepod Calanus finmarchicus (Gunn.). ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 113-121.

    Google Scholar 

  • Frost, B. W., 1980. Grazing. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford, England: 465-491.

    Google Scholar 

  • Frost, B. W., 1984. Utilization of phytoplankton production in the surface layer. In Global Ocean Flux Study, Proceedings of a Workshop. National Academy of Science, National Academy Press, Washington, D.C.: 125-135.

    Google Scholar 

  • Frost, B. W., 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49-68.

    Google Scholar 

  • Frost, B. W., 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36: 1616-1630.

    Google Scholar 

  • Frost, B.W., 1993. A modeling study of processes regulating plankton standing stock and production in the open subarctic Pacific Ocean. Progr. Oceanogr. 32: 17-56.

    Google Scholar 

  • Frost, B. W. & N. C. Franzen, 1992. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83: 291-303.

    Google Scholar 

  • Geider, R. J., H. L. MacIntyre & T. M. Kana, 1998. A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43: 679-694.

    Google Scholar 

  • Gieskes W. W. C. & G. W. Kraay, 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth. J. Sea Res. 9: 166-196.

    Google Scholar 

  • Goericke, R. & N. A. Welschmeyer, 1993. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol. Oceanogr. 38: 80-95.

    Google Scholar 

  • Goericke, R.& N. A. Welschmeyer, 1998. Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing. J. Plankton Res. 20: 2223-2249.

    Google Scholar 

  • Hardy, A. C. & E. R. Gunther, 1935. The plankton of the South Georgia whaling grounds and adjacent waters. Discovery Repts. 11: 1-456.

    Google Scholar 

  • Harrison, W. G., E. J. H. Head, E. P. W. Horne, B. Irwin, W. K. W. Li, A. R. Longhurst, M. A. Paranjape & T. Platt, 1993. the western North Atlantic Bloom Experiment. Deep-Sea Res. II 40: 279-305.

  • Harvey, H. W., 1934. Annual variation of planktonic vegetation. J. mar. biol. Ass. U.K., N.S., 19: 775-792.

    Google Scholar 

  • Harvey, H.W., L. H. N. Cooper, M. V. Lebour & F. S. Russell, 1935. Plankton production and its control. J. mar. biol. Ass. U.K., N.S., 20: 407-441.

    Google Scholar 

  • Hentschel, E., 1933/1936. Allgemeine Biologie des Südatlantischen Ozeans. Wiss. Ergebn. Dtsch. Atl. Exp. ‘Meteor’ 1925-1927 11: 1-344.

    Google Scholar 

  • Kiørboe, T., 1998. Population regulation and role of mesozooplankton in shaping marine food webs. Hydrobiologia 363: 13-27.

    Google Scholar 

  • (Also as T. Tamminen & H. Kuosa (eds), Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Kluwer Academic Publishers, Dordrecht.)

  • Kolber, Z., R. T. Barber, K. H. Coale, S. E. Fitzwater, R. M. Greene, K. S. Johnson, S. Lindley & P. G. Falkowski, 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371: 145-149.

    Google Scholar 

  • Krause, M. & G. Radach, 1980. On the succession of developmental stages of herbivorous zooplankton in the northern North Sea during FLEX '76. 1. First statements about the main groups of the zooplankton community. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 133-149.

    Google Scholar 

  • Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity & J. R. White, 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42: 405-418.

    Google Scholar 

  • Landry, M. R., S. L. Brown, L. Campbell, J. Constantinou & H. Liu, 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep-Sea Res. II 45: 2353-2368.

    Google Scholar 

  • Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000b. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201: 57-72

    Google Scholar 

  • Landry, M. R., B. C. Monger & K. E. Selph, 1993. Timedependency of microzooplankton grazing and phytoplankton growth in the subarctic Pacific. Prog. Oceanogr. 32: 205-222.

    Google Scholar 

  • Landry, M. R., M. E. Ondrusek, S. J. Tanner, S. L. Brown, J. Constantinou, R. R. Bidigare, K. H. Coale & S. Fitzwater, 2000a. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201: 27-42.

    Google Scholar 

  • Law, C. S., A. J. Watson, M. I. Liddocoat & T. Stanton, 1998. Sulphur hexafluoride as a tracer of biogeochemical and physical processes in an open-ocean iron fertilisation experiment. Deep-Sea Res. II 45: 977-994.

    Google Scholar 

  • Lenz, J., A. Morales & J. Gunkel, 1993. Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Res. II, 40: 559-572.

    Google Scholar 

  • Lessard, E. J. & M. C. Murrell, 1998. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea. Aquat. microb. Ecol. 16: 173-188.

    Google Scholar 

  • Letelier, R. M., J. E. Dore, C. D. Winn & D.M. Karl, 1996. Seasonal and interannual variations in photosynthetic carbon assimilation at Station ALOHA. Deep-Sea Res. II 43: 467-490.

    Google Scholar 

  • Lindley S. T. & R. T. Barber, 1998. Phytoplankton response to natural and experimental iron addition. Deep-Sea Res. II 45: 1135-1150.

    Google Scholar 

  • Lochte, K., H. W. Ducklow, M. J. R. Fasham & C. Stienen, 1993. Plankton succession and carbon cycling at 47∘ N 20∘ W during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II, 40: 91-114.

    Google Scholar 

  • Margalef, R., F. Muñoz & J. Herrera, 1957. Fitoplancton de las costas de Castellón de enero de 1955 a junio de 1956. Inv. Pesq. 7: 3-31.

    Google Scholar 

  • Martin, J. H. & 43 others, 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123-129.

    Google Scholar 

  • Michaels, A. F., A. H. Knap, R. L. Dow, K. Gundersen, R. J. Johnson, J. Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel & R. Bidigare, 1994. Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site. Deep-Sea Res. I 41: 1013-1038.

    Google Scholar 

  • Mommaerts, J. P., G. Pichot, J. Ozer, Y. Adam & W. Bayens, 1984. Nitrogen cycling and budget in Belgian coastal waters: North Sea with and without river inputs. Rapp. P.-v. Réun. Cons. int. Expl. Mer 183: 57-68.

    Google Scholar 

  • Nathansohn, A., 1910a. Über die allgemeinen Produktionsbedingungen im Meere. Int. Rev. ges. Hydrobiol. 1: 37-72

    Google Scholar 

  • Nathansohn, A., 1910b. Tier-und Pflanzenleben des Meeres. Quelle & Meyer, Leipzig, 130 pp.

    Google Scholar 

  • Radach, G., 1980. Preliminary simulations of the phytoplankton and phosphate dynamics during FLEX '76 with a simple two-component model. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 151-163.

    Google Scholar 

  • Riley, G. A., 1946. Factors controlling phytoplankton populations on Georges Bank. J. mar. Res. 6: 54-73.

    Google Scholar 

  • Rollwagen Bollens, G. C. & M. R. Landry, 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). II. Mesozooplankton abundance, biomass, depth distribution and grazing. Mar. Ecol. Prog. Ser. 201: 43-56.

    Google Scholar 

  • Smetacek, V. & U. Passow, 1990. Spring bloom initiation and Sverdrup's critical-depth model. Limnol. Oceanogr. 35: 228-234.

    Google Scholar 

  • Steele, J. H., 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7: 137-150.

    Google Scholar 

  • Steemann Nielsen, E., 1935. The production of phytoplankton at the Faroe Islands, Iceland, East Greenland and in the waters around. Medd. Komm. Danmarks Fisk.-Havunders., Ser. Plankton 3 (1): 1-93.

    Google Scholar 

  • Steemann Nielsen, E., 1937. On the relation between the quantities of phytoplankton and zooplankton in the sea. J. Cons. 12: 147-154.

    Google Scholar 

  • Steemann Nielsen, E., 1951. Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167: 684-685.

    Google Scholar 

  • Steemann Nielsen, E., 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. 18: 117-140

    Google Scholar 

  • Steemann Nielsen, E., 1957. The general background of oceanic productivity. In Steemann Nielsen, E. & E. A. Jensen (eds), Primary Oceanic Production. The Autotrophic Production of Organic Matter in the Oceans. Galathea Rept. 1: 91-120.

  • Steemann Nielsen, E., 1958. The balance between phytoplankton and zooplankton in the sea. J. Cons. 23: 178-188.

    Google Scholar 

  • Steeman Nielsen, E., 1962. The relationship between phytoplankton and zooplankton in the sea. Rapp. P.-v. Réun. Cons. int. Expl. Mer 153: 178-182.

    Google Scholar 

  • Steemann Nielsen, E., 1963. Productivity, definitions and measurement. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience Publ., New York: 129-164.

    Google Scholar 

  • Steemann Nielsen, E., 1975. Marine Photosynthesis with Special Emphasis on the Ecological Aspects. Elsevier, Amsterdam: 141 pp.

    Google Scholar 

  • Steemann Nielsen, E. & D. H. Cushing, 1958. Introduction. Rapp. P.-v. Réun. Cons. int. Expl. Mer 144: 5-9.

    Google Scholar 

  • Strom, S. L., M. A. Brainard, J. L. Holmes & M. B. Olson, 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar. Biol. 138: 355-368.

    Google Scholar 

  • Strom, S. L., C. B. Miller & B. W. Frost, 2000. What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean? Mar. Ecol. Prog. Ser. 193: 19-31.

    Google Scholar 

  • Sverdrup, H. U., M. W. Johnson & R. H. Fleming, 1942. The Oceans, their Physics, Chemistry, and General Biology. Prentice-Hall, Englewood Cliffs, NJ: 1087 pp.

    Google Scholar 

  • Watson, A. J., C. S. Law, K. Vanscoy, F. J. Millero, W. Yao, G. E. Friederich, M. I. Liddicoat, R. H. Wanninkhof, R. T. Barber & K. H. Coale, 1994. Minimal effect of iron fertilization on seasurface carbon dioxide concentrations. Nature 371: 143-145.

    Google Scholar 

  • Weichart, G., 1980. Chemical changes and primary production in the Fladen Ground area (North Sea) during the first phase of a spring phytoplankton bloom. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 79-86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banse, K. Steemann Nielsen and the zooplankton. Hydrobiologia 480, 15–28 (2002). https://doi.org/10.1023/A:1021220714899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021220714899

Navigation