Skip to main content

Future directions in protein function prediction

Abstract

New directions in computational methods for the prediction of protein function are discussed. THEMATICS, a method for the location and characterization of the active sites of enzymes, is featured. THEMATICS, for Theoretical Microscopic Titration Curves, is based on well-established finite-difference Poisson-Boltzmann methods for computing the electric field function of a protein. THEMATICS requires only the structure of the subject protein and thus may be applied to proteins that bear no similarity in structure or sequence to any previously characterized protein. The unique features of catalytic sites in proteins are discussed. Discussion of the chemical basis for the predictive powers of THEMATICS is featured in this paper. Some results are given for three illustrative examples: HIV-1 protease, human apurinic/apyrimidinic endonuclease, and human adenosine kinase.

This is a preview of subscription content, access via your institution.

References

  1. Venter JC, Adams MD, Myers EW et al. (2001) Science 291: 1304

    Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitzhugh W et al. (2001) Nature 409: 860

    Google Scholar 

  3. Birney E, Bateman A, Clamp ME & Hubbard TJ (2001) Nature 409: 827–828

    Google Scholar 

  4. O'Brien SJ, Eizirik E & Murphy WJ (2001) Science 292: 2264–2266

    Google Scholar 

  5. Kim SH (1998) Nature Struct. Biol. 5: 643–645

    Google Scholar 

  6. Terwilliger TC, Waldo G, Peat TS, Newman JM, Chu K & Berendzen J (1998) Protein Sci. 7: 1851–1856

    Google Scholar 

  7. Sali A (1998) Nature Struct. Biol. 5: 1929–1932

    Google Scholar 

  8. Montelione GT & Anderson S (1999) Nature Struct. Biol. 6: 11–12

    Google Scholar 

  9. Burley SK, Almo, SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D, Sali A, Studier FW & Swaminathan S (1999) Nature Genet. 23: 151–157

    Google Scholar 

  10. Eisenstein E, Gilliland GL, Herzberg O, Moult J, Orban J, Poljak RJ, Banerjei L, Richardson D & Howard AJ (2000) Curr. Opin. Biotechnol. 11: 25–30

    Google Scholar 

  11. Vitkup D, Melamud E, Moult J & Sander C (2001) Nat. Struct. Biol. 8(6): 559–566

    Google Scholar 

  12. Ondrechen MJ, Clifton JG & Ringe D (2001) Proc. Natl. Acad. Sci. (USA) 98: 12473–12478

    Google Scholar 

  13. Lichtarge O, Bourne HR & Cohen FE (1996) J. Mol. Biol; 257(2): 342–358

    Google Scholar 

  14. Sjolander K (1998) Proc. Int. Conf. Intell. Syst. Mol. Biol. 6: 165–174

    Google Scholar 

  15. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO & Eisenberg D (1999) Nature 402(6757): 83–86

    Google Scholar 

  16. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO & Eisenberg D (1999) Science 285(5428): 751–753.

    Google Scholar 

  17. Carter CW, Jr, LeFebvre BC, Cammer SA, Tropsha A & Edgell MH (2001) J. Mol. Biol. 311(4): 625–638

    Google Scholar 

  18. Babbitt PC & Klein TE (1998) Superfamily Analysis: Understanding Protein Function from Structure and Sequence, in Encyclopedia of Computational Chemistry, P.v.R. Schleyer, Ed. Wiley: Chichester, West Sussex, U.K. p. 2859–2870

    Google Scholar 

  19. Fetrow JS, Siew N, Di Gennaro JA, Martinez-Yamout M, Dyson HJ & Skolnick J (2001) Protein Sci. 10(5): 1005–1014

    Google Scholar 

  20. Fetrow JS, Siew N & Skolnick J (1999) Faseb J. 13(13): 1866–1874

    Google Scholar 

  21. Fetrow JS & Skolnick J (1998) J. Mol. Biol. 281(5): 949–968

    Google Scholar 

  22. Hegyi H & Gerstein M (1999) J. Mol. Biol. 288(1): 147–164

    Google Scholar 

  23. Skolnick J & Fetrow JS (2000) Trends Biotechnol. 18(1): 34–39

    Google Scholar 

  24. Teichmann SA, Murzin AG & Chothia C (2001) Curr. Opin. Struct. Biol. 11(3): 354–363

    Google Scholar 

  25. Wallace AC, Borkakoti N & Thornton JM (1997) Protein Sci. 6(11): 2308–2323

    Google Scholar 

  26. Laskowski RA, Luscombe NM, Swindells MB & Thornton JM (1996) Protein Sci. 5: 2438–2452

    Google Scholar 

  27. Oshiro CM, Kuntz ID & Knegtel RMA (1998) Molecular Docking and Structure-based Design, in Encyclopedia of Computational Chemistry, P.v.R. Schleyer, Ed. Wiley: Chichester, West Sussex, U.K. p. 1606–1613

    Google Scholar 

  28. Chen YZ (2001) Biophys. J. 80: 497A

    Google Scholar 

  29. Chen YZ & Zhi DG (2001) Proteins 43(2): 217–226

    Google Scholar 

  30. Elcock AH (2001) J. Mol. Biol. 312: 885–896

    Google Scholar 

  31. Ma B, Wolfson HJ & Nussinov R (2001) Curr. Opin. Struct. Biol. 11: 364–369

    Google Scholar 

  32. Demirel MC, Atilgan AR, Jernigan RL, Erman B & Bahar I (1998) Protein Sci. 7: 2522–2532

    Google Scholar 

  33. Bahar I, Erman B, Jernigan RL & Covell DG (1999) J. Mol. Biol. 285: 1023–1037

    Google Scholar 

  34. Jernigan RL, Demirel MC & Bahar I (1999) Int. J. Quantum Chem. 75: 301–312

    Google Scholar 

  35. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O & Bahar I (2001) Biophys. J. 80: 505–515

    Google Scholar 

  36. Doruker P, Jernigan RL & Bahar I (2002) J. Comp. Chem. 34: 119–127

    Google Scholar 

  37. Ohno K, Kamiya N, Asakawa N, Inoue Y & Sakurai M (2001) J. Am. Chem. Soc. 123: 8161–8162

    Google Scholar 

  38. Antosiewicz J, Briggs JM, Elcock AH, Gilson MK & McCammon JA (1996) J. Comp. Chem. 17: 1633–1644

    Google Scholar 

  39. Bashford D & Karplus M (1991) J. Phys. Chem. 95: 9556–9561

    Google Scholar 

  40. Gilson MK (1993) Proteins 15(3): 266–282

    Google Scholar 

  41. Warwicker J & Watson HC (1982) J. Mol. Biol. 157(4): 671–679

    Google Scholar 

  42. Yang AS, Gunner MR, Sampogna R, Sharp K & Honig B (1993) Proteins 15(3): 252–265

    Google Scholar 

  43. Bashford D & Gerwert K (1992) J. Mol. Biol. 224(2): 473–486

    Google Scholar 

  44. Beroza P, Fredkin DR, Okamura MY & Feher G (1995) Biophys. J. 68(6): 2233–2250

    Google Scholar 

  45. Carlson HA, Briggs Jm & McCammon JA (1999) J. Med. Chem. 42(1): 109–117

    Google Scholar 

  46. Sampogna RV & Honig B (1994) Biophys. J. 66(5): 1341–1352

    Google Scholar 

  47. Shaw JP, Petsko GA & Ringe D (1997) Biochemistry 36(6): 1329–1342

    Google Scholar 

  48. Stamper GF, Morollo AA, Ringe D & Stamper CG (1998) Biochemistry 37(29): 10438–10445

    Google Scholar 

  49. Ondrechen MJ, Briggs JM & McCammon JA (2001) J. Am. Chem. Soc. 123(12): 2830–2834

    Google Scholar 

  50. Watanabe A, Yoshimura T, Mikami B & Esaki N (1999) J. Biochem. 126: 781–786

    Google Scholar 

  51. Prabu-Jeyabalan M, Nalivaika E & Schiffer CA (2000) J. Mol. Biol. 301: 1207–1220

    Google Scholar 

  52. Fujinaga M, Chernaia MM, Tarasova NI, Mosimann SC & James MNG (1995) Protein Sci. 4: 960–972

    Google Scholar 

  53. Rutenber E, Fauman EB, Keenan RJ, Fong S, Furth PS, Ortiz de Montellano PR, Meng E, Kuntz Id, De Camp DL, Salto R, Rose JR, Craik CS & Stroud RM (1993) J. Biol. Chem. 268: 15343–15346

    Google Scholar 

  54. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN & Bourne PE (2000) Nucleic Acids Res. 28(1): 235–242

    Google Scholar 

  55. Bardi JS, Luque I & Freire E (1997) Biochemistry 36: 6588–6596

    Google Scholar 

  56. Strauss PR, Beard W, Patterson TA & Wilson SH (1997) J. Biol. Chem. 272: 1302–1307

    Google Scholar 

  57. Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DL & Rupp B (2001) J. Mol. Biol. 307: 1023–1034

    Google Scholar 

  58. Erzberger J & Wilson DM (1999) J. Mol. Biol. 290: 447–457

    Google Scholar 

  59. Mol CD, Izumi T, Mitra S & Tainer JA (2000) Nature 403: 451–456

    Google Scholar 

  60. Nguyen LH, Barsky D, Erzberger JP & Wilson DM (2000) J. Mol. Biol. 298: 447–459

    Google Scholar 

  61. Lucas JA, Masuda Y, Bennett RAO, Strauss NS & Strauss PR (1999) Biochemistry 38: 4958–4964.

    Google Scholar 

  62. Mathews II, Erion Md & Ealick SE (1998) Biochemistry 37: 15607–15620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shehadi, I.A., Yang, H. & Ondrechen, M.J. Future directions in protein function prediction. Mol Biol Rep 29, 329–335 (2002). https://doi.org/10.1023/A:1021220208562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021220208562

  • active site
  • computational methods
  • genomics
  • protein function prediction
  • proteomics
  • THEMATICS