Computational Geosciences

, Volume 6, Issue 3–4, pp 285–314 | Cite as

Shape Functions for Velocity Interpolation in General Hexahedral Cells

  • R.L. Naff
  • T.F. Russell
  • J.D. Wilson


Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

control-volume method CVMFE method distorted grid hexahedral grid local Darcy law local mass conservation mixed method Piola transformation vector shape function 3-D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.B. Allen, R.E. Ewing and P. Lu, Well-conditioned iterative schemes for mixed finite-element mod-els of porous-media flows, SIAM J. Sci. Comput. 13(3) (1992) 794-814.Google Scholar
  2. [2]
    T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal. 34 (1997) 828-852.Google Scholar
  3. [3]
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991).Google Scholar
  4. [4]
    Z. Cai, J.E. Jones, S.F. McCormick and T.F. Russell, Control volume mixed finite element methods, Comput. Geosci. 1 (1997) 289-315.Google Scholar
  5. [5]
    L.J. Durlofsky, A triangle based mixed finite element-finite volume technique for modeling two phase flow through porous media, J. Comput. Phys. 105 (1992) 252-266.Google Scholar
  6. [6]
    L.J. Durlofsky, Accuracy of mixed and control volume finite element approximations to Darcy veloc-ity and related quantities, Water Resourc. Res. 30(4) (1994) 965-973.Google Scholar
  7. [7]
    V.A. Garanzha and V.N. Konshin, Approximation schemes and discrete well models for the numerical simulation of the 2-D non-Darcy fluid flows in porous media, Comm. Appl. Math., Computer Centre, Russian Academy of Science, Moscow (1999).Google Scholar
  8. [8]
    F.B. Hildebrand, Advanced Calculus for Applications (Prentice-Hall, Englewood Cliffs, NJ, 1962).Google Scholar
  9. [9]
    R.L. Naff, T.F. Russell and J.D. Wilson, Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids, in: Proc. of the XIII Internat. Conf. on Computational Methods in Water Resources, eds. L.R. Bentley et al., Calgary, AB, Canada, 25-29 June 2000 (A.A. Balkema, 2000) pp. 677-684.Google Scholar
  10. [10]
    P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of Finite Element Methods, eds. I. Galligani and E. Magenes, Lecture Notes in Mathematics, Vol. 606 (Springer, New York, 1977) pp. 292-315.Google Scholar
  11. [11]
    J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'état, Université Pierre et Marie Curie, Paris (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R.L. Naff
    • 1
  • T.F. Russell
    • 2
  • J.D. Wilson
    • 2
  1. 1.U.S. Geological SurveyDenverUSA
  2. 2.University of Colorado at DenverDenverUSA

Personalised recommendations