Skip to main content
Log in

Reaction-Induced Transformations in Pt–Sn/SiO2 Catalysts: In Situ 119Sn Mössbauer Study

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Reaction-induced separation of tin-rich surface layers and tin-depleted inner region was observed in metallic particles of Pt–Sn/SiO2 catalysts in two reactions: (i) dechlorination of 1,2-dichloroethane at 473 K (modeling catalytic removal of chlorine from hazardous chlorocarbons) and (ii) oxidation of carbon monoxide at room temperature. In the former, a Pt : Sn catalyst (1 : 2 atomic ratio, 1 wt% metal content), prepared via co-impregnation, showed high selectivity (>80%) toward ethylene (at the expense of ethane), but only after a prolonged (ca. 24 h) period. In situ Mössbauer studies revealed stabilization of a homogeneous Pt–Sn alloy and SnCl2 after activation in hydrogen; whereas tin-depleted and tin-rich components were separated after a 24-h period. Hence, inhibition of the hydrogenation activity of Pt, by surface tin enrichment and Cl deposition favors high ethylene selectivity. For the oxidation of CO at room temperature, a catalyst with a Pt : Sn atomic ratio of 3 : 2 (3 wt% Pt) was prepared by an organometallic (CSR) method using 119Sn(CH3)4. Platinum-rich PtSn(1) and tin-rich PtSn(2) components were separated in the Mössbauer spectra of catalyst activated at 570 K. The PtSn(2) component is primarily involved in surface reactions. Both in CO oxidation and the subsequent re-activation in hydrogen at room temperature a reversible PtSn(2) ↔ Sn4+ interconversion occurred. d ln (A 77/A 300)/dT data indicate the surface location of the involved components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dautzenberg, F. M., Helle, J. N., Biloen, P. and Sachtler, W. M. H., J. Catal. 63 (1980), 119.

    Google Scholar 

  2. Coq, B. and Figueras, F., J. Catal. 85 (1984), 197.

    Google Scholar 

  3. Davis, B., J. Catal. 42 (1976), 376.

    Google Scholar 

  4. Early, K. O., Rhodes, W. D., Kovalchuk, V. I. and d'Itri, J. L., Appl. Catal. B 26 (2000), 257.

    Google Scholar 

  5. Chuang, S. C. C. and Bozzelli, J. W., Environ. Sci. Tech. 20 (1986), 568.

    Google Scholar 

  6. Ritter, E. R., Bozzelli, J. W. and Dean, A. M., J. Phys. Chem. 94 (1990), 2493.

    Google Scholar 

  7. Kosusko, M., Mullins, M. E., Ramanathan, K. and Rogers, T. N., Environ. Prog. 7 (1988), 136.

    Google Scholar 

  8. Tichenor, B. A. and Palazzolo, M. A., Environ. Prog. 6 (1987), 172.

    Google Scholar 

  9. Rhodes, W. D., Kovalchuk, V. I., d'Itri, J. L. and Lázár, K., J. Catal., submitted for publication.

  10. Gardner, S. D., Hoflund, G. B., Davidson, M. R. and Schryer, D. R., J. Catal. 115 (1989), 132.

    Google Scholar 

  11. Grass, K. and Lintz, H.-G., J. Catal. 172 (1997), 446.

    Google Scholar 

  12. Margitfalvi, J. L., Borbáth, I., Tfirst, E. and Tompos, A., Catal. Today 43 (1998), 29.

    Google Scholar 

  13. Margitfalvi, J. L., Borbáth, I. and Tompos, A., Stud. Surf. Sci. Catal. 118 (1998), 195.

    Google Scholar 

  14. Margitfalvi, J.L., Borbáth, I., Lázár, K., Tfirst, E., Szegedi, A., Hegedüs, M. and Göbölös, S., J. Catal. 203 (2001), 94.

    Google Scholar 

  15. Gray, P. R. and Farha, F. E., Mössbauer Effect Methodology 10 (1976), 47.

    Google Scholar 

  16. Bacaud, R., Bussière, P. and Figueras, F., J. Catal. 69 (1981), 399.

    Google Scholar 

  17. Charlton, J. S., Cordey-Hayes, M. and Harris, I. R., J. Less-Common Metals 20 (1970), 105.

    Google Scholar 

  18. Hobson, M. C., Goresh, S. L. and Khare, G. P., J. Catal. 142 (1993), 641.

    Google Scholar 

  19. Stievano, L., Wagner, F. E., Calogero, S., Recchia, S., Dossi, C. and Psaro, R., Stud. Surf. Sci. Catal. 130 (2000), 3903.

    Google Scholar 

  20. Lázár, K., Matusek, K., Mink, J., Dobos, S., Guczi, L., Vizi-Orosz, A., Markó, L. and Reiff, W. M., J. Catal. 87 (1984), 163.

    Google Scholar 

  21. Parish, R. V., In: G. J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, Plenum Press, New York, 1984, p. 527.

    Google Scholar 

  22. Kappenstein, C., Guérin, M., Lázár, K., Matusek, K. and Paál, Z., J. Chem. Soc., Faraday Trans. 94 (1998), 2463.

    Google Scholar 

  23. Cortright, R. D. and Dumesic, J. A., J. Catal. 148 (1994), 771.

    Google Scholar 

  24. Kuznetsov, V. I., Belyi, A. S., Yurchenko, E. N., Smolikov, D.M., Protasova, M. T., Zatolokina, E. V. and Duplyakin, V. K., J. Catal. 99 (1986), 159.

    Google Scholar 

  25. Stievano, L., Calogero, S., Wagner, F. E., Galvano, S. and Milone, C., J. Phys. Chem. B 103 (1999), 9545.

    Google Scholar 

  26. Lázár, K., Szeleczky, A. M., Mal, N. K. and Ramaswamy, A. V., Zeolites 19 (1997), 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lázár, K., Rhodes, W.D., Borbáth, I. et al. Reaction-Induced Transformations in Pt–Sn/SiO2 Catalysts: In Situ 119Sn Mössbauer Study. Hyperfine Interactions 139, 87–96 (2002). https://doi.org/10.1023/A:1021215203911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021215203911

Keywords

Navigation