Skip to main content
Log in

The Canonical Genus of a Classical and Virtual Knot

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A diagram D of a knot defines the corresponding Gauss Diagram G D . However, not all Gauss diagrams correspond to the ordinary knot diagrams. From a Gauss diagram G we construct closed surfaces F G and S G in two different ways, and we show that if the Gauss diagram corresponds to an ordinary knot diagram D, then their genus is the genus of the canonical Seifert surface associated to D. Using these constructions we introduce the virtual canonical genus invariant of a virtual knot and find estimates on the number of alternating knots of given genus and given crossing number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacher, R. and Vdovina, A.: Counting 1-vertex triangulations of oriented surfaces, Institut Fourier preprint 447 (1998), available from http://www-fourier.ujf-grenoble.fr/.

  2. Crowell, R.: Genus of alternating link types, Ann. of Math. (2) 69 (1959), 258–275.

    Google Scholar 

  3. Culler, M.: Using surfaces to solve equations in free group, Topology 20(2) (1981), 133–145.

    Google Scholar 

  4. Goussarov, M., Polyak, M. and Viro, O.: Finite-type invariants of classical and virtual knots, Topology 39(5) (2000), 1045–1068.

    Google Scholar 

  5. Kauffman, L. H.: Virtual knot theory, Europ. J. Combin. 20 (1999), 663–690.

    Google Scholar 

  6. Kawauchi, A.: On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11(1) (1994), 49–68.

    Google Scholar 

  7. Kobayashi, M. and Kobayashi, T.: On canonical genus and free genus of knot, J. Knot Theory Ramifications 5(1) (1996), 77–85.

    Google Scholar 

  8. Moriah, Y.: On the free genus of knots, Proc. Amer. Math. Soc. 99(2) (1987), 373–379.

    Google Scholar 

  9. Mosher, L.: A User's Guide to the Mapping Class Group: Once Punctured Surfaces, DIMACS Ser. 25, Amer. Math. Soc., Providence, 1994.

    Google Scholar 

  10. Menasco, W. W. and Thistlethwaite, M. B.: The Tait flyping conjecture, Bull. Amer. Math. Soc. 25(2) (1991), 403–412.

    Google Scholar 

  11. Murasugi, K.: On the genus of the alternating knot, J. Math. Soc. Japan 10 (1958), 94–105, 235-248.

    Google Scholar 

  12. Rolfsen, D.: Knots and Links, Math. Lecture Ser. 7, Publish or Perish, Berkeley, CA 1976.

    Google Scholar 

  13. Stoimenow, A.: Knots of genus one, to appear in Proc. Amer. Math. Soc.

  14. Stoimenow, A.: Jones polynomial, genus and weak genus of a knot, Ann. Fac. Sci. Toulouse 8 (4) (1999), 677–693.

    Google Scholar 

  15. Vdovina, A.: Constructing orientable Wicks forms and estimation of their number, Comm. Algebra 23(9) (1995), 3205–3222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoimenow, A., Tchernov, V. & Vdovina, A. The Canonical Genus of a Classical and Virtual Knot. Geometriae Dedicata 95, 215–225 (2002). https://doi.org/10.1023/A:1021211008278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021211008278

Navigation