Role of Copper in Mitochondrial Biogenesis Via Interaction with ATP Synthase and Cytochrome c Oxidase

Abstract

Animals that are copper deficient have cardiac hypertrophy where there is a dramatic increase in mitochondria. Mitochondrial biogenesis is enhanced in this model and there is an upregulation of mitochondrial transcription factor A (mtTFA) and nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2). While the cuproenzyme, cytochrome c oxidase (CCO), is an attractive candidate to explain the connection between cardiac hypertrophy in copper deficiency and subsequent mitochondrial biogenesis, studies have revealed that ATP synthase may be impacted by copper depletion. NRF-1 and NRF-2 can bind to some of the subunits of both CCO and ATP synthase to regulate gene expression. Furthermore, oxidative phosphorylation appears to occur unaltered in the copper-deficient state. Copper-deficient mitochondria appear to be less sensitive to the inhibitory effect of oligomycin compared to controls. Decreases in the δ subunit protein and β mRNA transcript have been reported for ATP synthase as a function of copper deficiency. The limited data available suggest that copper, either indirectly or directly, alters ATP synthase function.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. Archinard, P., Godinot, C., Comte, J., and Gautheron, D. C. (1986). Biochemistry 25, 3397–3404.

    Google Scholar 

  2. Belogrudov, G., Tomich, J. M., and Hatefi, Y. (1996). J. Biol. Chem. 271, 20340–20345.

    Google Scholar 

  3. Bonnikov, G. E., Vinogradova, S. O., and Chernyak, B. V. (1990). FEBS Lett. 266, 83–86.

    Google Scholar 

  4. Chao, J. C., Medeiros, D. M., Atschuld, R. A., and Hohl, C. M. (1993). Life Sci. 104A, 163–168.

    Google Scholar 

  5. Chau, J. C., Medeiros, D. M., Davidson, J., and Shiry, L. (1994). J. Nutr. 124, 789–803.

    Google Scholar 

  6. Chau, C. A., Evans, M. J., and Scarpulla, R. C. (1992). J. Biol. Chem. 267, 6999–7006.

    Google Scholar 

  7. Chen, X., Jennings, D. B., and Medeiros, D. M. (2002). J. Bioenerg. Biomem. 34, 397–406.

    Google Scholar 

  8. Dairaghi, D. J., Shadel, G. S., and Clayton, D. A. (1995). J. Mol. Biol. 249, 11–28.

    Google Scholar 

  9. Davidson, J. A., Medeiros, D. M., and Hamlin, R. L. (1992). J. Nutr. 122, 1566–1575.

    Google Scholar 

  10. Giraud, M. F., and Velours, J. (1997). Eur. J. Biochem. 245, 813–818.

    Google Scholar 

  11. Gomez-Puyou, A., Ayala, G., Muller, U., and Tuena de Gomez-Puyou, M. (1983). J. Biol. Chem. 258, 13673–13679.

    Google Scholar 

  12. Gopalakrishnan, L., and Scarpulla, R. C. (1995). J. Biol. Chem. 270, 18019–18025.

    Google Scholar 

  13. Guerrieri, F., Zanotti, F., Capozza, G., Colaianni, G., Ronchi, S., and Papa, S. (1991). Biochim. Biophys. Acta 1059, 348–354.

    Google Scholar 

  14. Guerrieri, F., Zanotti, F., Che, Y. W., scarfo, R., and Papa, S. (1987). Biochim. Biophys. Acta 892, 284–293.

    Google Scholar 

  15. Gugneja, S., Virbasius, J.V., and Scarpulla, R. C. (1995). Mol. Cell. Biol. 15, 102–111. ATP Synthase, Cytochrome c Oxidase, and Copper 395

    Google Scholar 

  16. Hopp, J., Gatti, D., Weber, H., and Sebald, W. (1986). Eur. J. Biochem. 155, 259–264.

    Google Scholar 

  17. Klein, G., Satre, M., Dianoux, A. C., and Vignais, P. V. (1980). Biochemistry. 24, 2919–2925.

    Google Scholar 

  18. Jalili, T., Medeiros, D. M., and Wildman, R. E. C. (1996). J. Nutri. 126, 807–816.

    Google Scholar 

  19. LaFontaine, S., Firth, S. D., Camakaris, J., Englezou, A., Theohilos, M. B., Petris, M. J., Howie, M., Lockhart, P. J., Greenoughs, M., Brooks, H., Reddle, R. R., and Mercer, J. F.B. (1998). J. Biol. Chem. 272, 31375–31380.

    Google Scholar 

  20. Lukaski, H. C., Hall, C. B., and Marchello, M. J. (1995). J. Nutr. Biochem. 6, 445–451.

    Google Scholar 

  21. Mao, S., Leone, T. C., Kelly, D. P., and Medeiros, D. M. (2000). J. Nutr. 130, 2143–2150.

    Google Scholar 

  22. Mao, S., and Medeiros, D. M. (2001). Biol. Trace. Elem. Res. 83, 57–68.

    Google Scholar 

  23. Mao, S., Medeiros, D. M., and Wildman, R. E. C. (1998). Biol. Trace Elem. Res. 63, 175–184.

    Google Scholar 

  24. Marin-Garcia, J., and Goldenthal, M. J. (1997). Pediatr. Cardiol. 18, 251–260.

    Google Scholar 

  25. Martin, I., Villena, J. S., Giralt, M., Iglesias, R., Mampel, T., Vinas, O., and Villarroya, F. (1996). Mol. Cell. Biochem. 154, 107–111.

    Google Scholar 

  26. Matz, J. M., Saari, J. T., and Bode, A. M. (1995). J. Nutr. Biochem. 6, 644–652.

    Google Scholar 

  27. McCormick, R. J., Ovecka, G. D., and Medeiros, D. M. (1989). J. Nutr. 119, 1683–1690.

    Google Scholar 

  28. Medeiros, D. M., Bagby, D., Ovecka, G. and McCormick R. (1991a). J. Nutr. 121, 815–824.

    Google Scholar 

  29. Medeiros, D. M., and Beard, J. L. (1998). Proc. Soc. Exp. Biol. Med. 218, 370–375.

    Google Scholar 

  30. Medeiros, D. M., Liao, Z., and Hamlin, R. L. (1991b). J. Nutr. 121, 1026–1034.

    Google Scholar 

  31. Medeiros, D. M., Lin, K. N., Liu, C. F., and Thorne, B. M. (1984). Nutr. Rep. Int. 30, 559–564.

    Google Scholar 

  32. Medeiros, D. M., Shiry, L., Lincoln, A. J., and Prochaska, L. (1993). Biol. Trace Elem. Res. 36, 271–282.

    Google Scholar 

  33. Medeiros, D. M., Shiry, L., and Samelman, T. (1997). Comp. Biochem. Physiol. 117A, 77–87.

    Google Scholar 

  34. Medeiros, D. M., and Wildman, R. E. C. (1997). Proc. Soc. Exp. Biol. Med. 215, 299–313.

    Google Scholar 

  35. Montoya, J., Perez-Martos, A., Garstka, H. L., and Wiesner, R. L. (1997). Mol. Cell. Biochem. 174, 227–230.

    Google Scholar 

  36. Pan, W., Ko, Y. H., and Pedersen, P. L. (1998). Biochemistry 37, 6911–6923.

    Google Scholar 

  37. Papa, S., Xu, T., Gaballo, A., and Zanotti, F. (1999). In Frontiers of Cellular Bioenegetics: Molecular Biology, Biochemistry and Physiopathology (Papa, S., Guerrieri, F., and Tager, J. M., eds.), Plenum, London, UK, pp. 459–486.

    Google Scholar 

  38. Papa, S., Zanotti, F., and Gaballo, A. (2000). J. Bioenerg. Biomemb. 32, 401–411.

    Google Scholar 

  39. Parisi, M. A., Xu, B., and Clayton, D. A. (1993). Mol. Cell. Biol. 13, 1951–1961.

    Google Scholar 

  40. Pedersen, P. L., Ko, Y. H., and Hong, S. (2000a). J. Bioenerg. Biomemb. 32, 325–332.

    Google Scholar 

  41. Pedersen, P. L., Ko, Y. H., and Hong, S. (2000b). J. Bioenerg. Biomemb. 32, 423–432.

    Google Scholar 

  42. Pedersen, P. L., and Amzel, L. M. (1993). J. Biol. Chem. 268, 9937–9940.

    Google Scholar 

  43. Rusinko, N., and Prohaska, J. R. (1995). J. Nutr. 115, 936–943.

    Google Scholar 

  44. Saraste, M. (1999). Science (Washington, DC) 283, 1488–1493.

    Google Scholar 

  45. Tsunoda, S. P., Rodgers, A. J., Aggeler, R., Wilce, M. C., Yoshida, M., and Capaldi, R. A. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 6560–6564.

    Google Scholar 

  46. Villena, J. A., Vinas, O., Mampel, T., Iglesias, R., Giralt, M., and Villarroya F. (1998). Biochem. J. 331, 121–127.

    Google Scholar 

  47. Virbasius, J.V., and Scarpulla, R. C. (1994). Proc. Natl. Acad. Sci.U.S.A. 91, 1309–1313.

    Google Scholar 

  48. Virbasius, C. A., Virbasius, J. V., and Scarpulla, R. C. (1993). Genes Dev. 7, 2431–2445.

    Google Scholar 

  49. Wildman, R. E. C., Medeiros, D. M., Hamlin, R. L., Stills, H., Jones, D. A., and Bonagura, J. D. (1996). Biol. Tr. El. Res. 55, 55–70.

    Google Scholar 

  50. Wildman, R. E. C., Medeiros, D. M., and Jenkins, J. (1994). Biol. Tr. El. Res. 46, 51–66.

    Google Scholar 

  51. Wu, B. N., Medeiros, D. M., Liu, C. F., and Thorne, B. M. (1984). Nutr. Res. 4, 305–314.

    Google Scholar 

  52. Zanotti, F., Guerrieri, F., Capozza, G., Houstek, J., Runchi, S., and Papa, S. (1988). S Lett. 237, 9–14.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denis M. Medeiros.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medeiros, D.M., Jennings, D. Role of Copper in Mitochondrial Biogenesis Via Interaction with ATP Synthase and Cytochrome c Oxidase. J Bioenerg Biomembr 34, 389–395 (2002). https://doi.org/10.1023/A:1021206220851

Download citation

  • ATP synthase
  • copper
  • cytochrome c oxidase
  • mitochondrial transcriptional factor A
  • nuclear respiratory factors
  • mitochondria